BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9571033)

  • 1. The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis.
    Ruf A; Rolli V; de Murcia G; Schulz GE
    J Mol Biol; 1998 Apr; 278(1):57-65. PubMed ID: 9571033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.
    Karlberg T; Klepsch M; Thorsell AG; Andersson CD; Linusson A; Schüler H
    J Biol Chem; 2015 Mar; 290(12):7336-44. PubMed ID: 25635049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of 3-acetylpyridine adenine dinucleotide and ADP-ribose bound to the electron input module of respiratory complex I.
    Wohlwend D; Mérono L; Bucka S; Ritter K; Jessen HJ; Friedrich T
    Structure; 2024 Jun; 32(6):715-724.e3. PubMed ID: 38503292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Stable NAD
    Madern JM; Kim RQ; Misra M; Dikic I; Zhang Y; Ovaa H; Codée JDC; Filippov DV; van der Heden van Noort GJ
    Chembiochem; 2020 Oct; 21(20):2903-2907. PubMed ID: 32421893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System-wide identification and prioritization of enzyme substrates by thermal analysis.
    Saei AA; Beusch CM; Sabatier P; Wells JA; Gharibi H; Meng Z; Chernobrovkin A; Rodin S; Näreoja K; Thorsell AG; Karlberg T; Cheng Q; Lundström SL; Gaetani M; Végvári Á; Arnér ESJ; Schüler H; Zubarev RA
    Nat Commun; 2021 Feb; 12(1):1296. PubMed ID: 33637753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical analysis of the PARP1-homology region of PARP4/vault PARP.
    Frigon L; Pascal JM
    Nucleic Acids Res; 2023 Dec; 51(22):12492-12507. PubMed ID: 37971310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-ribosylation from molecular mechanisms to therapeutic implications.
    Suskiewicz MJ; Prokhorova E; Rack JGM; Ahel I
    Cell; 2023 Oct; 186(21):4475-4495. PubMed ID: 37832523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair.
    Herrmann GK; Yin YW
    Biomolecules; 2023 Jul; 13(8):. PubMed ID: 37627260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Privileged Scaffolds for Potent and Specific Inhibitors of Mono-ADP-Ribosylating PARPs.
    Nizi MG; Sarnari C; Tabarrini O
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Biomolecular Condensates by Poly(ADP-ribose).
    Rhine K; Odeh HM; Shorter J; Myong S
    Chem Rev; 2023 Jul; 123(14):9065-9093. PubMed ID: 37115110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARP1pred: a web server for screening the bioactivity of inhibitors against DNA repair enzyme PARP-1.
    Lerksuthirat T; Chitphuk S; Stitchantrakul W; Dejsuphong D; Malik AA; Nantasenamat C
    EXCLI J; 2023; 22():84-107. PubMed ID: 36814851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [1,2,4]Triazolo[3,4-
    Murthy S; Nizi MG; Maksimainen MM; Massari S; Alaviuhkola J; Lippok BE; Vagaggini C; Sowa ST; Galera-Prat A; Ashok Y; Venkannagari H; Prunskaite-Hyyryläinen R; Dreassi E; Lüscher B; Korn P; Tabarrini O; Lehtiö L
    J Med Chem; 2023 Jan; 66(2):1301-1320. PubMed ID: 36598465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human PARP1 Facilitates Transcription through a Nucleosome and Histone Displacement by Pol II In Vitro.
    Kotova EY; Hsieh FK; Chang HW; Maluchenko NV; Langelier MF; Pascal JM; Luse DS; Feofanov AV; Studitsky VM
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules.
    Nizi MG; Maksimainen MM; Lehtiö L; Tabarrini O
    J Med Chem; 2022 Jun; 65(11):7532-7560. PubMed ID: 35608571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The zinc-binding motif in tankyrases is required for the structural integrity of the catalytic ADP-ribosyltransferase domain.
    Sowa ST; Lehtiö L
    Open Biol; 2022 Mar; 12(3):210365. PubMed ID: 35317661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications.
    Langelier MF; Billur R; Sverzhinsky A; Black BE; Pascal JM
    Nat Commun; 2021 Nov; 12(1):6675. PubMed ID: 34795260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition.
    Obaji E; Maksimainen MM; Galera-Prat A; Lehtiö L
    Nat Commun; 2021 Jun; 12(1):3479. PubMed ID: 34108479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling.
    van Beek L; McClay É; Patel S; Schimpl M; Spagnolo L; Maia de Oliveira T
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARP Inhibitors: An Innovative Approach to the Treatment of Inflammation and Metabolic Disorders in Sepsis.
    Wasyluk W; Zwolak A
    J Inflamm Res; 2021; 14():1827-1844. PubMed ID: 33986609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARP1: Structural insights and pharmacological targets for inhibition.
    Spiegel JO; Van Houten B; Durrant JD
    DNA Repair (Amst); 2021 Jul; 103():103125. PubMed ID: 33940558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.