These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 9571049)
21. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Hayer-Hartl MK; Weber F; Hartl FU EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033 [TBL] [Abstract][Full Text] [Related]
22. Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. Roseman AM; Ranson NA; Gowen B; Fuller SD; Saibil HR J Struct Biol; 2001 Aug; 135(2):115-25. PubMed ID: 11580261 [TBL] [Abstract][Full Text] [Related]
23. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Martin J; Geromanos S; Tempst P; Hartl FU Nature; 1993 Nov; 366(6452):279-82. PubMed ID: 7901771 [TBL] [Abstract][Full Text] [Related]
24. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. Sameshima T; Ueno T; Iizuka R; Ishii N; Terada N; Okabe K; Funatsu T J Biol Chem; 2008 Aug; 283(35):23765-73. PubMed ID: 18567585 [TBL] [Abstract][Full Text] [Related]
25. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Illingworth M; Salisbury J; Li W; Lin D; Chen L Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593 [TBL] [Abstract][Full Text] [Related]
26. GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL-GroES complex. Inbar E; Horovitz A Biochemistry; 1997 Oct; 36(40):12276-81. PubMed ID: 9315866 [TBL] [Abstract][Full Text] [Related]
27. Release of both native and non-native proteins from a cis-only GroEL ternary complex. Burston SG; Weissman JS; Farr GW; Fenton WA; Horwich AL Nature; 1996 Sep; 383(6595):96-9. PubMed ID: 8779722 [TBL] [Abstract][Full Text] [Related]
28. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon. Dionisi HM; Viale AM Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891 [TBL] [Abstract][Full Text] [Related]
29. ATP induces non-identity of two rings in chaperonin GroEL. Bochkareva ES; Girshovich AS J Biol Chem; 1994 Sep; 269(39):23869-71. PubMed ID: 7929031 [TBL] [Abstract][Full Text] [Related]
30. Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Todd MJ; Viitanen PV; Lorimer GH Biochemistry; 1993 Aug; 32(33):8560-7. PubMed ID: 8102879 [TBL] [Abstract][Full Text] [Related]
31. GroEL and the GroEL-GroES Complex. Ishii N Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487 [TBL] [Abstract][Full Text] [Related]
32. Allosteric control by ATP of non-folded protein binding to GroEL. Yifrach O; Horovitz A J Mol Biol; 1996 Jan; 255(3):356-61. PubMed ID: 8568880 [TBL] [Abstract][Full Text] [Related]
33. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. Taguchi H; Tsukuda K; Motojima F; Koike-Takeshita A; Yoshida M J Biol Chem; 2004 Oct; 279(44):45737-43. PubMed ID: 15347650 [TBL] [Abstract][Full Text] [Related]
34. Phosphofructokinase interacts with molecular chaperonins GroEL and GroES. Melegh B; Minami Y Acta Biol Hung; 1997; 48(4):399-407. PubMed ID: 9847453 [TBL] [Abstract][Full Text] [Related]
35. The role of ATP hydrolysis in the function of the chaperonin GroEL: dynamic complex formation with GroES. Kawata Y; Hongo K; Nosaka K; Furutsu Y; Mizobata T; Nagai J FEBS Lett; 1995 Aug; 369(2-3):283-6. PubMed ID: 7649273 [TBL] [Abstract][Full Text] [Related]
36. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. Ye X; Lorimer GH Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4289-97. PubMed ID: 24167257 [TBL] [Abstract][Full Text] [Related]
37. Chaperonin GroEL-GroES Functions as both Alternating and Non-Alternating Engines. Yamamoto D; Ando T J Mol Biol; 2016 Jul; 428(15):3090-101. PubMed ID: 27393305 [TBL] [Abstract][Full Text] [Related]
38. The asymmetric ATPase cycle of the thermosome: elucidation of the binding, hydrolysis and product-release steps. Bigotti MG; Bellamy SR; Clarke AR J Mol Biol; 2006 Sep; 362(4):835-43. PubMed ID: 16942780 [TBL] [Abstract][Full Text] [Related]
39. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. Ranson NA; Burston SG; Clarke AR J Mol Biol; 1997 Mar; 266(4):656-64. PubMed ID: 9102459 [TBL] [Abstract][Full Text] [Related]
40. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES. Makio T; Arai M; Kuwajima K J Mol Biol; 1999 Oct; 293(1):125-37. PubMed ID: 10512721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]