These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A mutation in the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans resulting in altered specificity. Implications for the geometry of the active site. Scazzocchio C; Sealy-Lewis HM Eur J Biochem; 1978 Nov; 91(1):99-109. PubMed ID: 363429 [TBL] [Abstract][Full Text] [Related]
3. Chimeric purine transporters of Aspergillus nidulans define a domain critical for function and specificity conserved in bacterial, plant and metazoan homologues. Diallinas G; Valdez J; Sophianopoulou V; Rosa A; Scazzocchio C EMBO J; 1998 Jul; 17(14):3827-37. PubMed ID: 9670000 [TBL] [Abstract][Full Text] [Related]
4. Cloning and molecular characterization of hxA, the gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. Glatigny A; Scazzocchio C J Biol Chem; 1995 Feb; 270(8):3534-50. PubMed ID: 7876088 [TBL] [Abstract][Full Text] [Related]
5. Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774. Rebelo J; Macieira S; Dias JM; Huber R; Ascenso CS; Rusnak F; Moura JJ; Moura I; Romão MJ J Mol Biol; 2000 Mar; 297(1):135-46. PubMed ID: 10704312 [TBL] [Abstract][Full Text] [Related]
6. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077 [TBL] [Abstract][Full Text] [Related]
7. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Leimkühler S; Kern M; Solomon PS; McEwan AG; Schwarz G; Mendel RR; Klipp W Mol Microbiol; 1998 Feb; 27(4):853-69. PubMed ID: 9515710 [TBL] [Abstract][Full Text] [Related]
8. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540 [TBL] [Abstract][Full Text] [Related]
9. The oxpA5 mutation of Aspergillus nidulans is an allele of adB, the gene encoding adenylosuccinate synthetase. Ribard C; Scazzocchio C; Oestreicher N Mol Genet Genomics; 2001 Dec; 266(4):701-10. PubMed ID: 11810243 [TBL] [Abstract][Full Text] [Related]
10. The genetic control of the molybdoflavoproteins in Aspergillus nidulans. IV. A comparison between purine hydroxylase I and II. Lewis NJ; Hurt P; Sealy-Lewis HM; Scazzocchio C Eur J Biochem; 1978 Nov; 91(1):311-6. PubMed ID: 363427 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase. Thoenes U; Flores OL; Neves A; Devreese B; Van Beeumen JJ; Huber R; Romão MJ; LeGall J; Moura JJ; Rodrigues-Pousada C Eur J Biochem; 1994 Mar; 220(3):901-10. PubMed ID: 8143744 [TBL] [Abstract][Full Text] [Related]
12. Suppression of the acuH13 and acuH31 nonsense mutations in the carnitine/acylcarnitine translocase (acuH) gene of Aspergillus nidulans by the G265S substitution in the domain 2 of the release factor eRF1. Martínez O; Marco E; Gago F; Laborda F; Ramón De Lucas J Fungal Genet Biol; 2007 Feb; 44(2):139-51. PubMed ID: 16971148 [TBL] [Abstract][Full Text] [Related]
13. Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. Bonin I; Martins BM; Purvanov V; Fetzner S; Huber R; Dobbek H Structure; 2004 Aug; 12(8):1425-35. PubMed ID: 15296736 [TBL] [Abstract][Full Text] [Related]
14. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. Nishino T; Okamoto K; Eger BT; Pai EF; Nishino T FEBS J; 2008 Jul; 275(13):3278-89. PubMed ID: 18513323 [TBL] [Abstract][Full Text] [Related]
15. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019 [TBL] [Abstract][Full Text] [Related]
16. Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Monahan BJ; Unkles SE; Tsing I T; Kinghorn JR; Hynes MJ; Davis MA Fungal Genet Biol; 2002 Jun; 36(1):35-46. PubMed ID: 12051893 [TBL] [Abstract][Full Text] [Related]
17. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein. Munagala NR; Wang CC Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428 [TBL] [Abstract][Full Text] [Related]
18. Insights into the mechanism of domain closure and substrate specificity of glutamate dehydrogenase from Clostridium symbiosum. Stillman TJ; Migueis AM; Wang XG; Baker PJ; Britton KL; Engel PC; Rice DW J Mol Biol; 1999 Jan; 285(2):875-85. PubMed ID: 9878450 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of Substrate and Inhibitor Binding of Rhodobacter capsulatus Xanthine Dehydrogenase. Dietzel U; Kuper J; Doebbler JA; Schulte A; Truglio JJ; Leimkühler S; Kisker C J Biol Chem; 2009 Mar; 284(13):8768-76. PubMed ID: 19109249 [TBL] [Abstract][Full Text] [Related]
20. Substitution F569S converts UapA, a specific uric acid-xanthine transporter, into a broad specificity transporter for purine-related solutes. Amillis S; Koukaki M; Diallinas G J Mol Biol; 2001 Nov; 313(4):765-74. PubMed ID: 11697902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]