BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9571085)

  • 1. Homology modeling with low sequence identity.
    Tramontano A
    Methods; 1998 Mar; 14(3):293-300. PubMed ID: 9571085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical assessment of comparative molecular modeling of tertiary structures of proteins.
    Mosimann S; Meleshko R; James MN
    Proteins; 1995 Nov; 23(3):301-17. PubMed ID: 8710824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of secondary structure predictions of dengue virus type 2 NS2B/NS3 against crystal structure to evaluate the predictive power of the in silico methods.
    Othman R; Wahab HA; Yusof R; Rahman NA
    In Silico Biol; 2007; 7(2):215-24. PubMed ID: 17688447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of homology model quality with multivariate regression.
    Tøndel K
    J Chem Inf Comput Sci; 2004; 44(5):1540-51. PubMed ID: 15446811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology modeling and molecular dynamics study of West Nile virus NS3 protease: a molecular basis for the catalytic activity increased by the NS2B cofactor.
    Zhou H; Singh NJ; Kim KS
    Proteins; 2006 Nov; 65(3):692-701. PubMed ID: 16972281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing the issue of sequence-to-structure alignments in comparative modeling of CASP3 target proteins.
    Venclovas C; Ginalski K; Fidelis K
    Proteins; 1999; Suppl 3():73-80. PubMed ID: 10526355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative modeling for protein structure prediction.
    Ginalski K
    Curr Opin Struct Biol; 2006 Apr; 16(2):172-7. PubMed ID: 16510277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling three-dimensional protein structures for amino acid sequences of the CASP3 experiment using sequence-derived predictions.
    Fischer D
    Proteins; 1999; Suppl 3():61-5. PubMed ID: 10526353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing model accuracy using the homology modeling automatically software.
    Bhattacharya A; Wunderlich Z; Monleon D; Tejero R; Montelione GT
    Proteins; 2008 Jan; 70(1):105-18. PubMed ID: 17640066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism.
    Barbato G; Cicero DO; Nardi MC; Steinkühler C; Cortese R; De Francesco R; Bazzo R
    J Mol Biol; 1999 Jun; 289(2):371-84. PubMed ID: 10366511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking template selection and model quality assessment for high-resolution comparative modeling.
    Sadowski MI; Jones DT
    Proteins; 2007 Nov; 69(3):476-85. PubMed ID: 17623860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between multiple sequence alignments and quality of protein comparative models.
    Cozzetto D; Tramontano A
    Proteins; 2005 Jan; 58(1):151-7. PubMed ID: 15495137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and prediction of helix shift errors in homology modeling.
    Bock C; Hesser J
    In Silico Biol; 2006; 6(1-2):131-45. PubMed ID: 16789920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein threading by recursive dynamic programming.
    Thiele R; Zimmer R; Lengauer T
    J Mol Biol; 1999 Jul; 290(3):757-79. PubMed ID: 10395828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Peng HP; Yang AS
    Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.