These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 9571103)

  • 1. Activation of visuomotor systems during visually guided movements: a functional MRI study.
    Ellermann JM; Siegal JD; Strupp JP; Ebner TJ; Ugurbil K
    J Magn Reson; 1998 Apr; 131(2):272-85. PubMed ID: 9571103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of V5 (hMT+) in visually guided hand movements: an fMRI study.
    Oreja-Guevara C; Kleiser R; Paulus W; Kruse W; Seitz RJ; Hoffmann KP
    Eur J Neurosci; 2004 Jun; 19(11):3113-20. PubMed ID: 15182320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human medial intraparietal cortex subserves visuomotor coordinate transformation.
    Grefkes C; Ritzl A; Zilles K; Fink GR
    Neuroimage; 2004 Dec; 23(4):1494-506. PubMed ID: 15589113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural basis for the processes that underlie visually guided and internally guided force control in humans.
    Vaillancourt DE; Thulborn KR; Corcos DM
    J Neurophysiol; 2003 Nov; 90(5):3330-40. PubMed ID: 12840082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separating brain regions involved in internally guided and visual feedback control of moving effectors: an event-related fMRI study.
    Ogawa K; Inui T; Sugio T
    Neuroimage; 2006 Oct; 32(4):1760-70. PubMed ID: 16863694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements--an fMRI study.
    Nitschke MF; Arp T; Stavrou G; Erdmann C; Heide W
    Prog Brain Res; 2005; 148():151-64. PubMed ID: 15661188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of BOLD changes due to cued eye-closure and stopping during a continuous visuomotor task via model-based and model-free approaches.
    Poudel GR; Jones RD; Innes CR; Watts R; Davidson PR; Bones PJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):479-88. PubMed ID: 20525535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging.
    Loubinoux I; Carel C; Alary F; Boulanouar K; Viallard G; Manelfe C; Rascol O; Celsis P; Chollet F
    J Cereb Blood Flow Metab; 2001 May; 21(5):592-607. PubMed ID: 11333370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Watching your foot move--an fMRI study of visuomotor interactions during foot movement.
    Christensen MS; Lundbye-Jensen J; Petersen N; Geertsen SS; Paulson OB; Nielsen JB
    Cereb Cortex; 2007 Aug; 17(8):1906-17. PubMed ID: 17060367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain mechanisms for preparing increasingly complex sensory to motor transformations.
    Gorbet DJ; Staines WR; Sergio LE
    Neuroimage; 2004 Nov; 23(3):1100-11. PubMed ID: 15528110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural basis of visually guided head movements studied with fMRI.
    Petit L; Beauchamp MS
    J Neurophysiol; 2003 May; 89(5):2516-27. PubMed ID: 12611944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary sex differences in human cortical BOLD fMRI activity during the preparation of increasingly complex visually guided movements.
    Gorbet DJ; Sergio LE
    Eur J Neurosci; 2007 Feb; 25(4):1228-39. PubMed ID: 17331218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks.
    Gelnar PA; Krauss BR; Sheehe PR; Szeverenyi NM; Apkarian AV
    Neuroimage; 1999 Oct; 10(4):460-82. PubMed ID: 10493903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI reveals a preference for near viewing in the human parieto-occipital cortex.
    Quinlan DJ; Culham JC
    Neuroimage; 2007 May; 36(1):167-87. PubMed ID: 17398117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual guidance modulates hemispheric asymmetries during an interlimb coordination task.
    Woolley DG; Wenderoth N; Heuninckx S; Zhang X; Callaert D; Swinnen SP
    Neuroimage; 2010 May; 50(4):1566-77. PubMed ID: 20079443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study.
    Denslow S; Lomarev M; George MS; Bohning DE
    Biol Psychiatry; 2005 Apr; 57(7):752-60. PubMed ID: 15820232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function.
    Babiloni F; Cincotti F; Babiloni C; Carducci F; Mattia D; Astolfi L; Basilisco A; Rossini PM; Ding L; Ni Y; Cheng J; Christine K; Sweeney J; He B
    Neuroimage; 2005 Jan; 24(1):118-31. PubMed ID: 15588603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.