These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 9571132)

  • 21. Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements.
    Lafleur MF; Jackson PL; Malouin F; Richards CL; Evans AC; Doyon J
    Neuroimage; 2002 May; 16(1):142-57. PubMed ID: 11969325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. G-Causality Brain Connectivity Differences of Finger Movements between Motor Execution and Motor Imagery.
    Chen C; Zhang J; Belkacem AN; Zhang S; Xu R; Hao B; Gao Q; Shin D; Wang C; Ming D
    J Healthc Eng; 2019; 2019():5068283. PubMed ID: 31662834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.
    Jueptner M; Weiller C
    Brain; 1998 Aug; 121 ( Pt 8)():1437-49. PubMed ID: 9712006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An electroencephalographic study of imagined movement.
    Green JB; Bialy Y; Sora E; Thatcher RW
    Arch Phys Med Rehabil; 1997 Jun; 78(6):578-81. PubMed ID: 9196463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The facilitating effect of clinical hypnosis on motor imagery: an fMRI study.
    Müller K; Bacht K; Schramm S; Seitz RJ
    Behav Brain Res; 2012 May; 231(1):164-9. PubMed ID: 22465168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reevaluating brain networks activated during mental imagery of finger movements using probabilistic Tensorial Independent Component Analysis (TICA).
    Sauvage C; Poirriez S; Manto M; Jissendi P; Habas C
    Brain Imaging Behav; 2011 Jun; 5(2):137-48. PubMed ID: 21369855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-paced versus metronome-paced finger movements. A positron emission tomography study.
    Wessel K; Zeffiro T; Toro C; Hallett M
    J Neuroimaging; 1997 Jul; 7(3):145-51. PubMed ID: 9237433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The functional neuroanatomy of simple and complex sequential finger movements: a PET study.
    Catalan MJ; Honda M; Weeks RA; Cohen LG; Hallett M
    Brain; 1998 Feb; 121 ( Pt 2)():253-64. PubMed ID: 9549504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of mental motor imagery on the execution of a finger-to-thumb opposition task.
    Gemignani A; Di Stefano M; Sebastiani L; Ghelarducci B; Jeannerod M; Guazzelli M; Massarelli R
    Arch Ital Biol; 2004 Feb; 142(1):1-9. PubMed ID: 15143619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hand movement distribution in the motor cortex: the influence of a concurrent task and motor imagery.
    Rodríguez M; Muñiz R; González B; Sabaté M
    Neuroimage; 2004 Aug; 22(4):1480-91. PubMed ID: 15275905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional cerebral blood flow during voluntary arm and hand movements in human subjects.
    Colebatch JG; Deiber MP; Passingham RE; Friston KJ; Frackowiak RS
    J Neurophysiol; 1991 Jun; 65(6):1392-401. PubMed ID: 1875248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple movement representations in the human brain: an event-related fMRI study.
    Toni I; Shah NJ; Fink GR; Thoenissen D; Passingham RE; Zilles K
    J Cogn Neurosci; 2002 Jul; 14(5):769-84. PubMed ID: 12167261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The activation pattern in normal humans during suppression, imagination and performance of saccadic eye movements.
    Law I; Svarer C; Holm S; Paulson OB
    Acta Physiol Scand; 1997 Nov; 161(3):419-34. PubMed ID: 9401596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional neuroanatomical networks associated with expertise in motor imagery.
    Guillot A; Collet C; Nguyen VA; Malouin F; Richards C; Doyon J
    Neuroimage; 2008 Jul; 41(4):1471-83. PubMed ID: 18479943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motor and visual imagery as two complementary but neurally dissociable mental processes.
    Sirigu A; Duhamel JR
    J Cogn Neurosci; 2001 Oct; 13(7):910-9. PubMed ID: 11595094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls.
    Weeks RA; Gerloff C; Dalakas M; Hallett M
    Exp Brain Res; 1999 Oct; 128(3):291-302. PubMed ID: 10501801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relevance of sensory input for the cerebellar control of movements.
    Jueptner M; Ottinger S; Fellows SJ; Adamschewski J; Flerich L; Müller SP; Diener HC; Thilmann AF; Weiller C
    Neuroimage; 1997 Jan; 5(1):41-8. PubMed ID: 9038283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor imagery in normal subjects and Parkinson's disease patients: an H215O PET study.
    Samuel M; Ceballos-Baumann AO; Boecker H; Brooks DJ
    Neuroreport; 2001 Mar; 12(4):821-8. PubMed ID: 11277590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.