These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9571531)

  • 1. Monitoring oxygen partial pressure in tissue using microdialysis sampling and membrane coated oxygen sensors.
    Liang XZ; Zhang Y; Lunte CE
    J Pharm Biomed Anal; 1998 Mar; 16(7):1143-52. PubMed ID: 9571531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass transfer and gas-phase calibration of implanted oxygen sensors.
    Makale MT; Jablecki MC; Gough DA
    Anal Chem; 2004 Mar; 76(6):1773-7. PubMed ID: 15018582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of microfluidic blood gas sensors that combine microdialysis and optical monitoring.
    Cooney CG; Towe BC
    Med Biol Eng Comput; 2004 Sep; 42(5):720-4. PubMed ID: 15503975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing.
    Carter R; Banham SW
    Respir Med; 2000 Apr; 94(4):350-5. PubMed ID: 10845433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcutaneous measurement of partial pressure of oxygen and carbon dioxide.
    Franklin ML
    Respir Care Clin N Am; 1995 Sep; 1(1):119-31. PubMed ID: 9390854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Study of temperature, oxygen dependence and in vivo experiment.
    Ricci F; Caprio F; Poscia A; Valgimigli F; Messeri D; Lepori E; Dall'Oglio G; Palleschi G; Moscone D
    Biosens Bioelectron; 2007 Apr; 22(9-10):2032-9. PubMed ID: 17000099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical sensor using thick film technology for transcutaneous oxygen measurement.
    Lam YZ; Atkinson JK
    Med Eng Phys; 2007 Apr; 29(3):291-7. PubMed ID: 16716637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible approach to amperometric oxygen determination.
    Hutchings M; Dewey I; Cherry GW; Rolfe P
    J Biomed Eng; 1988 Apr; 10(2):149-54. PubMed ID: 3361870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats.
    Mou X; Lennartz MR; Loegering DJ; Stenken JA
    Biomaterials; 2010 Jun; 31(16):4530-9. PubMed ID: 20223515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise.
    Sridhar MK; Carter R; Moran F; Banham SW
    Thorax; 1993 Jun; 48(6):643-7. PubMed ID: 8346496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible transcutaneous oxygen sensor using polymer membranes.
    Kudo H; Iguchi S; Yamada T; Kawase T; Saito H; Otsuka K; Mitsubayashi K
    Biomed Microdevices; 2007 Feb; 9(1):1-6. PubMed ID: 17091394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of the one-point in vivo calibration of "wired" glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration.
    Schmidtke DW; Heller A
    Anal Chem; 1998 May; 70(10):2149-55. PubMed ID: 9608851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects.
    Wisniewski N; Klitzman B; Miller B; Reichert WM
    J Biomed Mater Res; 2001 Dec; 57(4):513-21. PubMed ID: 11553881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous online microdialysis using microfluidic sensors: dynamic neurometabolic changes during spreading depolarization.
    Rogers ML; Feuerstein D; Leong CL; Takagaki M; Niu X; Graf R; Boutelle MG
    ACS Chem Neurosci; 2013 May; 4(5):799-807. PubMed ID: 23574576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcutaneous oxygen tension monitoring in critically ill patients receiving packed red blood cells.
    Schlager O; Gschwandtner ME; Willfort-Ehringer A; Kurz M; Mueller M; Koppensteiner R; Heinz G
    J Crit Care; 2014 Dec; 29(6):1057-62. PubMed ID: 25012959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo cell and tissue monitoring with active implants.
    Clauss JF; Wirths W; Roos M; Wöhrle B; Brischwein M; Wolf B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7087-90. PubMed ID: 26737925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glucose biosensor based on an oxygen electrode: in-vitro performances in model buffer solution and in blood plasma.
    Yang S; Atanasov P; Wilkins E
    Biomed Instrum Technol; 1996; 30(1):55-61. PubMed ID: 8850596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical considerations for microdialysis sampling.
    Davies MI; Cooper JD; Desmond SS; Lunte CE; Lunte SM
    Adv Drug Deliv Rev; 2000 Dec; 45(2-3):169-88. PubMed ID: 11108973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time changes in hippocampal energy demands during a spatial working memory task.
    Kealy J; Bennett R; Woods B; Lowry JP
    Behav Brain Res; 2017 May; 326():59-68. PubMed ID: 28249730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.