These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 957248)

  • 1. Evidence for genetic control of glycine uptake in cultured cells, regulated by the amino acid concentration of the growth medium.
    Hume SP; Lamb JF
    J Physiol; 1976 Jul; 259(1):83-101. PubMed ID: 957248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for nuclear control of amino acid transport in cultured cells.
    Hume SP; Lamb JF; Weingart R
    Nature; 1975 May; 255(5503):73-4. PubMed ID: 1128670
    [No Abstract]   [Full Text] [Related]  

  • 3. Osmoregulation of amino acid transport activity in cultured fibroblasts.
    Tramacere M; Petronini PG; Severini A; Borghetti AF
    Exp Cell Res; 1984 Mar; 151(1):70-9. PubMed ID: 6698124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings: Effect of growth in various concentrations of amino acids on the properties of the A-mediated amino acid uptake system in cultured cells.
    Hume SP; Lamb JF
    J Physiol; 1974 May; 239(1):46P-47P. PubMed ID: 4859454
    [No Abstract]   [Full Text] [Related]  

  • 5. Characteristics and adaptive regulation of glycine transport in cultured glial cells.
    Zafra F; Giménez C
    Biochem J; 1989 Mar; 258(2):403-8. PubMed ID: 2705991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cycloheximide and actinomycin D on the amino acid transport system of Tetrahymena.
    Blum JJ
    J Cell Physiol; 1982 Apr; 111(1):104-10. PubMed ID: 7085766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive regulation of amino acid transport in cultured human fibroblasts. Sites and mechanism of action.
    Gazzola GC; Dall'Asta V; Guidotti GG
    J Biol Chem; 1981 Apr; 256(7):3191-8. PubMed ID: 7204399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear retention of the induced mRNA following amino acid-dependent transcriptional regulation of mammalian ribosomal proteins L17 and S25.
    Laine RO; Shay NF; Kilberg MS
    J Biol Chem; 1994 Apr; 269(13):9693-7. PubMed ID: 8144559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic regulation of ATA2 mRNA expression and amino acid transport System A activity.
    Alfieri RR; Petronini PG; Bonelli MA; Caccamo AE; Cavazzoni A; Borghetti AF; Wheeler KP
    Biochem Biophys Res Commun; 2001 Apr; 283(1):174-8. PubMed ID: 11322785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paradoxical effects of cycloheximide and cytochalasin B on hamster cell hexose uptake.
    Christopher CW; Ullrey D; Colby W; Kalckar M
    Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2429-33. PubMed ID: 1065898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional expression and adaptive regulation of Na+ -dependent neutral amino acid transporter SNAT2/ATA2 in normal human astrocytes under amino acid starved condition.
    Tanaka K; Yamamoto A; Fujita T
    Neurosci Lett; 2005 Apr; 378(2):70-5. PubMed ID: 15774260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine transport by cultured human fibroblasts.
    Longo N; Franchi-Gazzola R; Bussolati O; Dall'Asta V; Nucci FA; Spisni A; Gazzola GC
    Biochem Biophys Res Commun; 1988 Apr; 152(2):617-22. PubMed ID: 3365244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of proliferative rates and A system substrate availability on proline transport in primary cell cultures of the R3230AC mammary tumor.
    Gay RJ; Hilf R
    J Cell Physiol; 1980 Nov; 105(2):287-300. PubMed ID: 7462329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia upregulates amino acid transport in a human neuroblastoma cell line.
    Soh H; Wasa M; Fukuzawa M
    J Pediatr Surg; 2007 Apr; 42(4):608-12. PubMed ID: 17448754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination between different entry mechanisms for neutral amino acids in rabbit ileal mucosa.
    Sepúlveda FV; Smith MW
    J Physiol; 1978 Sep; 282():73-90. PubMed ID: 722566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeletal-dependent activation of system A for neutral amino acid transport in osmotically stressed mammalian cells: a role for system A in the intracellular accumulation of osmolytes.
    Gómez-Angelats M; López-Fontanals M; Felipe A; Casado FJ; Pastor-Anglada M
    J Cell Physiol; 1997 Dec; 173(3):343-50. PubMed ID: 9369947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine activates system A amino acid transport in L6 rat skeletal muscle cells.
    McDowell HE; Christie GR; Stenhouse G; Hundal HS
    Am J Physiol; 1995 Nov; 269(5 Pt 1):C1287-94. PubMed ID: 7491920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality.
    deZengotita VM; Abston LR; Schmelzer AE; Shaw S; Miller WM
    Biotechnol Bioeng; 2002 Jun; 78(7):741-52. PubMed ID: 12001166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of feeding with a tryptophan-free amino acid mixture on rat liver magnesium ion-activated deoxyribonucleic acid-dependent ribonucleic acid polymerase.
    Henderson AR
    Biochem J; 1970 Nov; 120(1):205-14. PubMed ID: 5494225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in endothelial cell glutathione and precursor amino acid uptake by diethyl maleate and hyperoxia.
    Deneke SM; Baxter DF; Phelps DT; Fanburg BL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):L265-71. PubMed ID: 2801955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.