BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 9572873)

  • 1. Reaction of dopa decarboxylase with alpha-methyldopa leads to an oxidative deamination producing 3,4-dihydroxyphenylacetone, an active site directed affinity label.
    Bertoldi M; Dominici P; Moore PS; Maras B; Voltattorni CB
    Biochemistry; 1998 May; 37(18):6552-61. PubMed ID: 9572873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction specificity of native and nicked 3,4-dihydroxyphenylalanine decarboxylase.
    Bertoldi M; Frigeri P; Paci M; Voltattorni CB
    J Biol Chem; 1999 Feb; 274(9):5514-21. PubMed ID: 10026165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions.
    Bertoldi M; Borri Voltattorni C
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):533-8. PubMed ID: 11085948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ornithine and glutamate decarboxylases catalyse an oxidative deamination of their alpha-methyl substrates.
    Bertoldi M; Carbone V; Borri Voltattorni C
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):509-12. PubMed ID: 10477260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation.
    Dominici P; Moore PS; Castellani S; Bertoldi M; Voltattorni CB
    Protein Sci; 1997 Sep; 6(9):2007-15. PubMed ID: 9300500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism-based inactivation of dopa decarboxylase by serotonin.
    Bertoldi M; Moore PS; Maras B; Dominici P; Voltattorni CB
    J Biol Chem; 1996 Sep; 271(39):23954-9. PubMed ID: 8798628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopa decarboxylase exhibits low pH half-transaminase and high pH oxidative deaminase activities toward serotonin (5-hydroxytryptamine).
    Bertoldi M; Voltattorni CB
    Protein Sci; 2001 Jun; 10(6):1178-86. PubMed ID: 11369856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green tea polyphenols: novel irreversible inhibitors of dopa decarboxylase.
    Bertoldi M; Gonsalvi M; Voltattorni CB
    Biochem Biophys Res Commun; 2001 Jun; 284(1):90-3. PubMed ID: 11374875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the mechanism of oxidative deamination catalyzed by DOPA decarboxylase.
    Bertoldi M; Cellini B; Montioli R; Borri Voltattorni C
    Biochemistry; 2008 Jul; 47(27):7187-95. PubMed ID: 18547057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes.
    Moore PS; Dominici P; Borri Voltattorni C
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):249-56. PubMed ID: 8670114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple roles of the active site lysine of Dopa decarboxylase.
    Bertoldi M; Voltattorni CB
    Arch Biochem Biophys; 2009 Aug; 488(2):130-9. PubMed ID: 19580779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of residues in the coenzyme binding pocket of Dopa decarboxylase. Effects on catalytic properties.
    Bertoldi M; Castellani S; Bori Voltattorni C
    Eur J Biochem; 2001 May; 268(10):2975-81. PubMed ID: 11358515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction and substrate specificity of recombinant pig kidney Dopa decarboxylase under aerobic and anaerobic conditions.
    Bertoldi M; Borri Voltattorni C
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):42-7. PubMed ID: 12686106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity labeling of pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase with N-(bromoacetyl)pyridoxamine 5'-phosphate. Modification of an active-site cysteine.
    Dominici P; Maras B; Mei G; Borri Voltattorni C
    Eur J Biochem; 1991 Oct; 201(2):393-7. PubMed ID: 1935936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quinonoid is an intermediate of oxidative deamination reaction catalyzed by Dopa decarboxylase.
    Bertoldi M; Cellini B; Maras B; Voltattorni CB
    FEBS Lett; 2005 Sep; 579(23):5175-80. PubMed ID: 16150447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies on the pyridoxal-5'-phosphate dependent enzyme dopa decarboxylase: effect of thr 246 residue on the co-factor-enzyme binding and reaction mechanism.
    Chakrabarty K; Gupta SN; Das GK; Roy S
    Indian J Biochem Biophys; 2012 Jun; 49(3):155-64. PubMed ID: 22803330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic analysis of Drosophila melanogaster dopa decarboxylase.
    Black BC; Smarrelli J
    Biochim Biophys Acta; 1986 Mar; 870(1):31-40. PubMed ID: 3081033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of radiolabeled monofluoromethyl-Dopa to define the subunit structure of human L-Dopa decarboxylase.
    Maneckjee R; Baylin SB
    Biochemistry; 1983 Dec; 22(26):6058-63. PubMed ID: 6661425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.
    Daidone F; Montioli R; Paiardini A; Cellini B; Macchiarulo A; Giardina G; Bossa F; Borri Voltattorni C
    PLoS One; 2012; 7(2):e31610. PubMed ID: 22384042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition.
    Bertoldi M
    Arch Biochem Biophys; 2014 Mar; 546():1-7. PubMed ID: 24407024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.