BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9572943)

  • 1. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems.
    Lebaron P; Parthuisot N; Catala P
    Appl Environ Microbiol; 1998 May; 64(5):1725-30. PubMed ID: 9572943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of nucleic acid dyes SYTO-13, TOTO-1, and YOYO-1 in the study of Escherichia coli and marine prokaryotic populations by flow cytometry.
    Guindulain T; Comas J; Vives-Rego J
    Appl Environ Microbiol; 1997 Nov; 63(11):4608-11. PubMed ID: 9361447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?
    Lebaron P; Servais P; Agogué H; Courties C; Joux F
    Appl Environ Microbiol; 2001 Apr; 67(4):1775-82. PubMed ID: 11282632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.
    Duedu KO; French CE
    J Microbiol Methods; 2017 Apr; 135():85-92. PubMed ID: 28215962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of RNA and DNA in the staining of Escherichia coli by SYTO 13.
    Guindulain T; Vives-Rego J
    Lett Appl Microbiol; 2002; 34(3):182-8. PubMed ID: 11874539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric enumeration of bacterial in the coral surface mucus layer.
    Bettarel Y; Thanh MC; Patrice G; Antoinette A; Nadège KN; Bui VN; Thierry B
    J Microbiol Methods; 2016 Sep; 128():16-19. PubMed ID: 27302040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria.
    Gasol JM; Zweifel UL; Peters F; Fuhrman JA; Hagström A
    Appl Environ Microbiol; 1999 Oct; 65(10):4475-83. PubMed ID: 10508078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater.
    Hu W; Murata K; Zhang D
    J Environ Sci (China); 2017 Jan; 51():202-213. PubMed ID: 28115131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric analysis of a marine LAS-degrading consortia.
    López-Amorós R; Comas J; Garcia MT; Vives-Rego J
    Microbios; 2000; 101(398):23-36. PubMed ID: 10677841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry.
    Khan MM; Pyle BH; Camper AK
    Appl Environ Microbiol; 2010 Aug; 76(15):5088-96. PubMed ID: 20543046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid staining and enumeration of small numbers of total bacteria in water by solid-phase laser cytometry.
    Broadaway SC; Barton SA; Pyle BH
    Appl Environ Microbiol; 2003 Jul; 69(7):4272-3. PubMed ID: 12839812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of apoptosis in live cells by MitoTracker red CMXRos and SYTO dye flow cytometry.
    Poot M; Gibson LL; Singer VL
    Cytometry; 1997 Apr; 27(4):358-64. PubMed ID: 9098628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP).
    Oscorbin IP; Belousova EA; Zakabunin AI; Boyarskikh UA; Filipenko ML
    Biotechniques; 2016; 61(1):20-5. PubMed ID: 27401670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria.
    Weinbauer MG; Beckmann C; Höfle MG
    Appl Environ Microbiol; 1998 Dec; 64(12):5000-3. PubMed ID: 9835595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution of viable and membrane-compromised free bacteria in aquatic environments by flow cytometry.
    Grégori G; Denis M; Seorbati S; Citterio S
    Curr Protoc Cytom; 2003 Feb; Chapter 11():Unit 11.15. PubMed ID: 18770775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of bacterial contamination in starch and resin-based papermaking chemicals using fluorescence techniques.
    Nohynek L; Saski E; Haikara A; Raaska L
    J Ind Microbiol Biotechnol; 2003 Apr; 30(4):239-44. PubMed ID: 12720090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-throughput method for detection of DNA in chloroplasts using flow cytometry.
    Rowan BA; Oldenburg DJ; Bendich AJ
    Plant Methods; 2007 Mar; 3():5. PubMed ID: 17381841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria.
    Phe MH; Dossot M; Guilloteau H; Block JC
    Water Res; 2005 Sep; 39(15):3618-28. PubMed ID: 16081129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk.
    Gunasekera TS; Veal DA; Attfield PV
    Int J Food Microbiol; 2003 Aug; 85(3):269-79. PubMed ID: 12878385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16.
    Pina-Vaz C; Costa-de-Oliveira S; Rodrigues AG
    J Med Microbiol; 2005 Jan; 54(Pt 1):77-81. PubMed ID: 15591259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.