These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9572964)

  • 1. Rapid Consumption of Low Concentrations of Methyl Bromide by Soil Bacteria.
    Hines ME; Crill PM; Varner RK; Talbot RW; Shorter JH; Kolb CE; Harriss RC
    Appl Environ Microbiol; 1998 May; 64(5):1864-70. PubMed ID: 9572964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics.
    Goodwin KD; Varner RK; Crill PM; Oremland RS
    Appl Environ Microbiol; 2001 Dec; 67(12):5437-43. PubMed ID: 11722890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils.
    Oremland RS; Miller LG; Culbertson CW; Connell TL; Jahnke L
    Appl Environ Microbiol; 1994 Oct; 60(10):3640-6. PubMed ID: 7986039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial oxidation of methyl bromide in fumigated agricultural soils.
    Miller LG; Connell TL; Guidetti JR; Oremland RS
    Appl Environ Microbiol; 1997 Nov; 63(11):4346-54. PubMed ID: 16535728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric Methyl Bromide (CH3Br) from Agricultural Soil Fumigations.
    Yagi K; Williams J; Wang NY; Cicerone RJ
    Science; 1995 Mar; 267(5206):1979-81. PubMed ID: 17770112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural soil fumigation as a source of atmospheric methyl bromide.
    Yagi K; Williams J; Wang NY; Cicerone RJ
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8420-3. PubMed ID: 11607425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils.
    Kolb S; Knief C; Dunfield PF; Conrad R
    Environ Microbiol; 2005 Aug; 7(8):1150-61. PubMed ID: 16011752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of methyl halides by the facultative methylotroph strain IMB-1.
    Schaefer JK; Oremland RS
    Appl Environ Microbiol; 1999 Nov; 65(11):5035-41. PubMed ID: 10543820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quest for atmospheric methane oxidizers in forest soils.
    Kolb S
    Environ Microbiol Rep; 2009 Oct; 1(5):336-46. PubMed ID: 23765885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils.
    Hancock TL; Costello AM; Lidstrom ME; Oremland RS
    Appl Environ Microbiol; 1998 Aug; 64(8):2899-905. PubMed ID: 9750123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils.
    Chiri E; Nauer PA; Rainer EM; Zeyer J; Schroth MH
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28687652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane uptake in global forest and grassland soils from 1981 to 2010.
    Yu L; Huang Y; Zhang W; Li T; Sun W
    Sci Total Environ; 2017 Dec; 607-608():1163-1172. PubMed ID: 28728308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of atmospheric methyl bromide by cryotrapping-gas chromatography and application to soil kinetic studies using a dynamic dilution system.
    Kerwin RA; Crill PM; Talbot RW; Hines ME; Shorter JH; Kolb CE; Harriss RC
    Anal Chem; 1996 Mar; 68(5):899-903. PubMed ID: 21619187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Declines in methane uptake in forest soils.
    Ni X; Groffman PM
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8587-8590. PubMed ID: 30082408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and biological controls on the in situ kinetic isotope effect associated with oxidation of atmospheric CH4 in mineral soils.
    Maxfield PJ; Evershed RP; Hornibrook ER
    Environ Sci Technol; 2008 Nov; 42(21):7824-30. PubMed ID: 19031867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of fumigants on soil microbial communities.
    Ibekwe AM; Papiernik SK; Gan J; Yates SR; Yang CH; Crowley DE
    Appl Environ Microbiol; 2001 Jul; 67(7):3245-57. PubMed ID: 11425748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental fate of methyl bromide as a soil fumigant.
    Yates SR; Gan J; Papiernik SK
    Rev Environ Contam Toxicol; 2003; 177():45-122. PubMed ID: 12666818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric Methane Consumption by Forest Soils and Extracted Bacteria at Different pH Values.
    Amaral JA; Ren T; Knowles R
    Appl Environ Microbiol; 1998 Jul; 64(7):2397-402. PubMed ID: 9647806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape.
    Fest B; Wardlaw T; Livesley SJ; Duff TJ; Arndt SK
    Glob Chang Biol; 2015 Nov; 21(11):4250-64. PubMed ID: 26087288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive films for mitigating methyl bromide emissions from fumigated soil.
    Xuan R; Ashworth DJ; Luo L; Yates SR
    Environ Sci Technol; 2011 Mar; 45(6):2317-22. PubMed ID: 21341689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.