BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9573049)

  • 1. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo.
    Semrad K; Schroeder R
    Genes Dev; 1998 May; 12(9):1327-37. PubMed ID: 9573049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-directed, hydroxylamine-generated suppressor mutation in the P3 pairing region of the bacteriophage T4 td intron partially restores self-splicing capability.
    Brown MD; DeYoung KL; Hall DH
    Mol Microbiol; 1994 Jul; 13(1):89-95. PubMed ID: 7984096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrupted thymidylate synthase gene of bacteriophages T2 and T6 and other potential self-splicing introns in the T-even bacteriophages.
    Chu FK; Maley F; Martinez J; Maley GF
    J Bacteriol; 1987 Sep; 169(9):4368-75. PubMed ID: 2442142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of the td pre-RNA with the help of the RNA chaperone StpA.
    Mayer O; Waldsich C; Grossberger R; Schroeder R
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):1175-80. PubMed ID: 12440999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of RNA chaperone activity in vivo and in vitro using misfolded group I ribozymes.
    Semrad K
    Methods Mol Biol; 2014; 1086():239-54. PubMed ID: 24136608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neomycin B inhibits splicing of the td intron indirectly by interfering with translation and enhances missplicing in vivo.
    Waldsich C; Semrad K; Schroeder R
    RNA; 1998 Dec; 4(12):1653-63. PubMed ID: 9848660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and characterization of mutations induced by nitrous acid or hydroxylamine in the intron-containing thymidylate synthase gene of bacteriophage T4.
    Brown MD; Povinelli CM; Hall DH
    Biochem Genet; 1993 Dec; 31(11-12):507-20. PubMed ID: 8166624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Better late than early: delayed translation of intron-encoded endonuclease I-TevI is required for efficient splicing of its host group I intron.
    Gibb EA; Edgell DR
    Mol Microbiol; 2010 Oct; 78(1):35-46. PubMed ID: 20497330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of a cryptic 5' splice site in the upstream exon of the phage T4 td transcript: exon context, missplicing, and mRNA deletion in a fidelity mutant.
    Chandry PS; Belfort M
    Genes Dev; 1987 Nov; 1(9):1028-37. PubMed ID: 3322941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap.
    Prenninger S; Schroeder R; Semrad K
    Nat Protoc; 2006; 1(3):1273-7. PubMed ID: 17406411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD+ inhibits the self-splicing of the group I intron.
    Park IK; Kim JY
    Biochem Biophys Res Commun; 2001 Feb; 281(1):206-11. PubMed ID: 11178981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novobiocin inhibits the self-splicing of the primary transcripts of T4 phage thymidylate synthase gene.
    Jung WS; Shin S; Park IK
    Mol Cell Biochem; 2008 Jul; 314(1-2):143-9. PubMed ID: 18443742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding problems of the 5' splice site containing the P1 stem of the group I thymidylate synthase intron: substrate binding inhibition in vitro and mis-splicing in vivo.
    Pichler A; Schroeder R
    J Biol Chem; 2002 May; 277(20):17987-93. PubMed ID: 11867626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal mutations affecting the translation of genes that use non-optimal codons.
    Pelchovich G; Nadejda S; Dana A; Tuller T; Bravo IG; Gophna U
    FEBS J; 2014 Aug; 281(16):3701-18. PubMed ID: 24966114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.