These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 9573146)
1. The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. Pajatsch M; Gerhart M; Peist R; Horlacher R; Boos W; Böck A J Bacteriol; 1998 May; 180(10):2630-5. PubMed ID: 9573146 [TBL] [Abstract][Full Text] [Related]
2. Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. Fiedler G; Pajatsch M; Böck A J Mol Biol; 1996 Feb; 256(2):279-91. PubMed ID: 8594196 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic preparation of radiolabeled linear maltodextrins and cyclodextrins of high specific activity from [14C] maltose using amylomaltase, cyclodextrin glucosyltransferase and cyclodextrinase. Pajatsch M; Böck A; Boos W Carbohydr Res; 1998 Feb; 307(3-4):375-9. PubMed ID: 9675373 [TBL] [Abstract][Full Text] [Related]
4. Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. Pajatsch M; Andersen C; Mathes A; Böck A; Benz R; Engelhardt H J Biol Chem; 1999 Aug; 274(35):25159-66. PubMed ID: 10455198 [TBL] [Abstract][Full Text] [Related]
5. Bacillus subtilis contains a cyclodextrin-binding protein which is part of a putative ABC-transporter. Kamionka A; Dahl MK FEMS Microbiol Lett; 2001 Oct; 204(1):55-60. PubMed ID: 11682178 [TBL] [Abstract][Full Text] [Related]
6. An NMR study of ligand binding by maltodextrin binding protein. Gehring K; Zhang X; Hall J; Nikaido H; Wemmer DE Biochem Cell Biol; 1998; 76(2-3):189-97. PubMed ID: 9923688 [TBL] [Abstract][Full Text] [Related]
7. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934 [TBL] [Abstract][Full Text] [Related]
8. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. Treptow NA; Shuman HA J Mol Biol; 1988 Aug; 202(4):809-22. PubMed ID: 3050132 [TBL] [Abstract][Full Text] [Related]
9. Refined 1.8-A structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. Sharff AJ; Rodseth LE; Quiocho FA Biochemistry; 1993 Oct; 32(40):10553-9. PubMed ID: 8399200 [TBL] [Abstract][Full Text] [Related]
10. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. Kühnau S; Reyes M; Sievertsen A; Shuman HA; Boos W J Bacteriol; 1991 Apr; 173(7):2180-6. PubMed ID: 2007546 [TBL] [Abstract][Full Text] [Related]
11. Metabolism of cyclodextrins by Klebsiella oxytoca m5a1: purification and characterisation of a cytoplasmically located cyclodextrinase. Feederle R; Pajatsch M; Kremmer E; Böck A Arch Microbiol; 1996 Mar; 165(3):206-12. PubMed ID: 8599539 [TBL] [Abstract][Full Text] [Related]
12. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon. Puyet A; Espinosa M J Mol Biol; 1993 Apr; 230(3):800-11. PubMed ID: 8478935 [TBL] [Abstract][Full Text] [Related]
13. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. Hor LI; Shuman HA J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172 [TBL] [Abstract][Full Text] [Related]
14. A thermodynamic study of the binding of linear and cyclic oligosaccharides to the maltodextrin-binding protein of Escherichia coli. Thomson J; Liu Y; Sturtevant JM; Quiocho FA Biophys Chem; 1998 Feb; 70(2):101-8. PubMed ID: 9540203 [TBL] [Abstract][Full Text] [Related]
15. The recognition of maltodextrins by Escherichia coli. Ferenci T Eur J Biochem; 1980 Jul; 108(2):631-6. PubMed ID: 6997044 [TBL] [Abstract][Full Text] [Related]
16. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein. Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376 [TBL] [Abstract][Full Text] [Related]
17. Exploring the role of integral membrane proteins in ATP-binding cassette transporters: analysis of a collection of MalG insertion mutants. Nelson BD; Traxler B J Bacteriol; 1998 May; 180(9):2507-14. PubMed ID: 9573205 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the binding of beta-cyclodextrin and alpha- and gamma-cyclodextrins with pullulanase from Klebsiella pneumoniae as studied by equilibrium and kinetic fluorometry. Iwamoto H; Ohno M; Ohmori M; Hirose J; Tanaka A; Sakai S; Hiromi K J Biochem; 1994 Dec; 116(6):1264-8. PubMed ID: 7706215 [TBL] [Abstract][Full Text] [Related]
19. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. Mourez M; Hofnung M; Dassa E EMBO J; 1997 Jun; 16(11):3066-77. PubMed ID: 9214624 [TBL] [Abstract][Full Text] [Related]
20. Sequence-function relationships in MalG, an inner membrane protein from the maltose transport system in Escherichia coli. Dassa E Mol Microbiol; 1993 Jan; 7(1):39-47. PubMed ID: 8437519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]