These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9573149)

  • 81. Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7.
    Moens S; Schloter M; Vanderleyden J
    J Bacteriol; 1996 Aug; 178(16):5017-9. PubMed ID: 8759869
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots.
    Santos ARS; Etto RM; Furmam RW; Freitas DL; Santos KFDN; Souza EM; Pedrosa FO; Ayub RA; Steffens MBR; Galvão CW
    Plant Physiol Biochem; 2017 Sep; 118():422-426. PubMed ID: 28711791
    [TBL] [Abstract][Full Text] [Related]  

  • 83. AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4(+)/NH3.
    Boogerd FC; Ma H; Bruggeman FJ; van Heeswijk WC; García-Contreras R; Molenaar D; Krab K; Westerhoff HV
    FEBS Lett; 2011 Jan; 585(1):23-8. PubMed ID: 21134373
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The Escherichia coli AmtB protein as a model system for understanding ammonium transport by Amt and Rh proteins.
    Merrick M; Javelle A; Durand A; Severi E; Thornton J; Avent ND; Conroy MJ; Bullough PA
    Transfus Clin Biol; 2006; 13(1-2):97-102. PubMed ID: 16563828
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transfer of a plant chitinase gene into a nitrogen-fixing Azospirillum and study of its expression.
    Jayaraj J; Muthukrishnan S; Liang GH
    Can J Microbiol; 2004 Jul; 50(7):509-13. PubMed ID: 15381976
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Membrane topology of the Mep/Amt family of ammonium transporters.
    Thomas GH; Mullins JG; Merrick M
    Mol Microbiol; 2000 Jul; 37(2):331-44. PubMed ID: 10931328
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene.
    Rodriguez H; Mendoza A; Cruz MA; Holguin G; Glick BR; Bashan Y
    FEMS Microbiol Ecol; 2006 Aug; 57(2):217-25. PubMed ID: 16867140
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.
    Camilios-Neto D; Bonato P; Wassem R; Tadra-Sfeir MZ; Brusamarello-Santos LC; Valdameri G; Donatti L; Faoro H; Weiss VA; Chubatsu LS; Pedrosa FO; Souza EM
    BMC Genomics; 2014 May; 15(1):378. PubMed ID: 24886190
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB.
    Coutts G; Thomas G; Blakey D; Merrick M
    EMBO J; 2002 Feb; 21(4):536-45. PubMed ID: 11847102
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501.
    Zhang T; Yan Y; He S; Ping S; Alam KM; Han Y; Liu X; Lu W; Zhang W; Chen M; Xiang W; Wang X; Lin M
    Res Microbiol; 2012 Jun; 163(5):332-9. PubMed ID: 22659337
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.
    Meza B; de-Bashan LE; Bashan Y
    Res Microbiol; 2015; 166(2):72-83. PubMed ID: 25554489
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sequencing and promoter analysis of the nifENXorf3orf5fdxAnifQ operon from Azospirillum brasilense Sp7.
    Potrich DP; Bressel TA; Schrank IS; Passaglia LM
    Braz J Med Biol Res; 2001 Nov; 34(11):1379-95. PubMed ID: 11668346
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Mechanism for nitrogen isotope fractionation during ammonium assimilation by Escherichia coli K12.
    Vo J; Inwood W; Hayes JM; Kustu S
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8696-701. PubMed ID: 23650377
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense.
    Sotomaior P; Araújo LM; Nishikawa CY; Huergo LF; Monteiro RA; Pedrosa FO; Chubatsu LS; Souza EM
    Braz J Med Biol Res; 2012 Dec; 45(12):1135-40. PubMed ID: 22983183
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Molecular cloning and sequencing of an operon, carRS of Azospirillum brasilense, that codes for a novel two-component regulatory system: demonstration of a positive regulatory role of carR for global control of carbohydrate catabolism.
    Chattopadhyay S; Mukherjee A; Ghosh S
    J Bacteriol; 1994 Dec; 176(24):7484-90. PubMed ID: 8002571
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Characterization of pII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris.
    Connelly HM; Pelletier DA; Lu TY; Lankford PK; Hettich RL
    Anal Biochem; 2006 Oct; 357(1):93-104. PubMed ID: 16860774
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Identification of a regulatory nifA type gene and physical mapping of cloned new nif regions of Azospirillum brasilense.
    Singh M; Tripathi AK; Klingmüller W
    Mol Gen Genet; 1989 Oct; 219(1-2):235-40. PubMed ID: 2559312
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Complex formation between AmtB and GlnK: an ancestral role in prokaryotic nitrogen control.
    Javelle A; Merrick M
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):170-2. PubMed ID: 15667297
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Isolation and characterization of the Azospirillum brasilense trpE(G) gene, encoding anthranilate synthase.
    De Troch P; Dosselaere F; Keijers V; de Wilde P; Vanderleyden J
    Curr Microbiol; 1997 Jan; 34(1):27-32. PubMed ID: 8939798
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Expression of the NH(+)(4)-transporter gene LEAMT1;2 is induced in tomato roots upon association with N(2)-fixing bacteria.
    Becker D; Stanke R; Fendrik I; Frommer WB; Vanderleyden J; Kaiser WM; Hedrich R
    Planta; 2002 Jul; 215(3):424-9. PubMed ID: 12111224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.