BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9573172)

  • 21. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis.
    Sysoeva TA; Chowdhury S; Guo L; Nixon BT
    Genes Dev; 2013 Nov; 27(22):2500-11. PubMed ID: 24240239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutant forms of Salmonella typhimurium sigma54 defective in transcription initiation but not promoter binding activity.
    Kelly MT; Hoover TR
    J Bacteriol; 1999 Jun; 181(11):3351-7. PubMed ID: 10348845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulatory sequences in sigma 54 localise near the start of DNA melting.
    Wigneshweraraj SR; Chaney MK; Ishihama A; Buck M
    J Mol Biol; 2001 Mar; 306(4):681-701. PubMed ID: 11243780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic analysis of the Rhizobium meliloti nifH promoter, using the P22 challenge phage system.
    Ashraf SI; Kelly MT; Wang YK; Hoover TR
    J Bacteriol; 1997 Apr; 179(7):2356-62. PubMed ID: 9079923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of the toluene-responsive regulator XylR causes a transcriptional switch between sigma54 and sigma70 promoters at the divergent Pr/Ps region of the TOL plasmid.
    Bertoni G; Marqués S; de Lorenzo V
    Mol Microbiol; 1998 Feb; 27(3):651-9. PubMed ID: 9489676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti.
    Robinson JB; Bauer WD
    J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide-dependent triggering of RNA polymerase-DNA interactions by an AAA regulator of transcription.
    Cannon W; Bordes P; Wigneshweraraj SR; Buck M
    J Biol Chem; 2003 May; 278(22):19815-25. PubMed ID: 12649285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD.
    Ledebur H; Nixon BT
    Mol Microbiol; 1992 Dec; 6(23):3479-92. PubMed ID: 1474893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro roles of invariant helix-turn-helix motif residue R383 in sigma(54) (sigma(N)).
    Wigneshweraraj SR; Ishihama A; Buck M
    Nucleic Acids Res; 2001 Mar; 29(5):1163-74. PubMed ID: 11222766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into the activity of enhancer-binding proteins.
    Rappas M; Schumacher J; Beuron F; Niwa H; Bordes P; Wigneshweraraj S; Keetch CA; Robinson CV; Buck M; Zhang X
    Science; 2005 Mar; 307(5717):1972-5. PubMed ID: 15790859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting.
    Burrows PC; Severinov K; Buck M; Wigneshweraraj SR
    EMBO J; 2004 Oct; 23(21):4253-63. PubMed ID: 15470504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54.
    Bordes P; Wigneshweraraj SR; Schumacher J; Zhang X; Chaney M; Buck M
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2278-83. PubMed ID: 12601152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase.
    Bowman WC; Kranz RG
    Genes Dev; 1998 Jun; 12(12):1884-93. PubMed ID: 9637689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two domains within sigmaN (sigma54) cooperate for DNA binding.
    Cannon WV; Chaney MK; Wang X; Buck M
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5006-11. PubMed ID: 9144180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness.
    Chaney M; Buck M
    Mol Microbiol; 1999 Sep; 33(6):1200-9. PubMed ID: 10510234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sigma54-dependent transcription activator phage shock protein F of Escherichia coli: a fragmentation approach to identify sequences that contribute to self-association.
    Bordes P; Wigneshweraraj SR; Zhang X; Buck M
    Biochem J; 2004 Mar; 378(Pt 3):735-44. PubMed ID: 14659000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation.
    Dago AE; Wigneshweraraj SR; Buck M; Morett E
    J Biol Chem; 2007 Jan; 282(2):1087-97. PubMed ID: 17090527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism.
    Boucher JC; Schurr MJ; Deretic V
    Mol Microbiol; 2000 Apr; 36(2):341-51. PubMed ID: 10792721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of regulated and deregulated forms of the sigma54 holoenzyme with heteroduplex promoter DNA.
    Cannon W; Wigneshweraraj SR; Buck M
    Nucleic Acids Res; 2002 Feb; 30(4):886-93. PubMed ID: 11842099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module.
    Gu B; Lee JH; Hoover TR; Scholl D; Nixon BT
    Mol Microbiol; 1994 Jul; 13(1):51-66. PubMed ID: 7984094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.