These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9573174)

  • 41. Identification of a lactose-responsive element upstream of the promoter of Bacillus megaterium beta-galactosidase-encoding gene mbgA.
    Li JM; Chiou CY; Lee TR; Chen YS; Shaw GC
    Curr Microbiol; 2005 Jul; 51(1):31-4. PubMed ID: 15971092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Kuipers OP
    Appl Environ Microbiol; 2014 Sep; 80(17):5349-58. PubMed ID: 24951784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of the central loop of the lactose permease of Escherichia coli in its allosteric regulation by the glucose-specific enzyme IIA of the phosphoenolpyruvate-dependent phosphotransferase system.
    Hoischen C; Levin J; Pitaknarongphorn S; Reizer J; Saier MH
    J Bacteriol; 1996 Oct; 178(20):6082-6. PubMed ID: 8830713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic characterization of a Rhizobium meliloti lactose utilization locus.
    Jelesko JG; Leigh JA
    Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum.
    Muscariello L; Marasco R; De Felice M; Sacco M
    Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insertional mutagenesis of hydrophilic domains in the lactose permease of Escherichia coli.
    McKenna E; Hardy D; Kaback HR
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11954-8. PubMed ID: 1465425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cysteine-scanning mutagenesis of putative helix VII in the lactose permease of Escherichia coli.
    Frillingos S; Sahin-Tóth M; Persson B; Kaback HR
    Biochemistry; 1994 Jul; 33(26):8074-81. PubMed ID: 8025113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR.
    Daniel RA; Haiech J; Denizot F; Errington J
    J Bacteriol; 1997 Sep; 179(17):5636-8. PubMed ID: 9287030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane assembly of lactose permease of Escherichia coli.
    Yamato I
    J Biochem; 1992 Apr; 111(4):444-50. PubMed ID: 1618733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction of a functional lactose permease devoid of cysteine residues.
    van Iwaarden PR; Pastore JC; Konings WN; Kaback HR
    Biochemistry; 1991 Oct; 30(40):9595-600. PubMed ID: 1911745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability.
    Yamamoto K; Ogasawara H; Fujita N; Utsumi R; Ishihama A
    Mol Microbiol; 2002 Jul; 45(2):423-38. PubMed ID: 12123454
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
    Iyer R; Baliga NS; Camilli A
    J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immediate stoichiometric appearance of beta-galactosidase products in the medium of Escherichia coli cells incubated with lactose.
    Huber RE; Pisko-Dubienski R; Hurlburt KL
    Biochem Biophys Res Commun; 1980 Sep; 96(2):656-61. PubMed ID: 6775629
    [No Abstract]   [Full Text] [Related]  

  • 56. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa.
    Song J; Jensen RA
    Mol Microbiol; 1996 Nov; 22(3):497-507. PubMed ID: 8939433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Autoregulation of lactose uptake through the LacY permease by enzyme IIAGlc of the PTS in Escherichia coli K-12.
    Hogema BM; Arents JC; Bader R; Postma PW
    Mol Microbiol; 1999 Mar; 31(6):1825-33. PubMed ID: 10209753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein.
    Jung K; Jung H; Colacurcio P; Kaback HR
    Biochemistry; 1995 Jan; 34(3):1030-9. PubMed ID: 7827019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose.
    Markgraf M; Bocklage H; Müller-Hill B
    Mol Gen Genet; 1985; 198(3):473-5. PubMed ID: 3892229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.