These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9573192)

  • 1. Regulatory conservation and divergence of sigma32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens.
    Nakahigashi K; Yanagi H; Yura T
    J Bacteriol; 1998 May; 180(9):2402-8. PubMed ID: 9573192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens.
    Nakahigashi K; Yanagi H; Yura T
    J Bacteriol; 2001 Sep; 183(18):5302-10. PubMed ID: 11514513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria.
    McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B
    J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential and independent roles of a sigma(32) homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens.
    Nakahigashi K; Ron EZ; Yanagi H; Yura T
    J Bacteriol; 1999 Dec; 181(24):7509-15. PubMed ID: 10601208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus.
    Reisenauer A; Mohr CD; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter.
    Wu J; Newton A
    J Bacteriol; 1997 Jan; 179(2):514-21. PubMed ID: 8990305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.
    Schurr MJ; Deretic V
    Mol Microbiol; 1997 Apr; 24(2):411-20. PubMed ID: 9159526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric bacteria.
    Ramírez-Santos J; Collado-Vides J; García-Varela M; Gómez-Eichelmann MC
    Nucleic Acids Res; 2001 Jan; 29(2):380-6. PubMed ID: 11139607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease.
    Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F
    Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning the gene for the heat shock response positive regulator (sigma 32 homolog) from Pseudomonas aeruginosa.
    Naczynski ZM; Mueller C; Kropinski AM
    Can J Microbiol; 1995 Jan; 41(1):75-87. PubMed ID: 7728657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti.
    Ono Y; Mitsui H; Sato T; Minamisawa K
    Mol Gen Genet; 2001 Feb; 264(6):902-12. PubMed ID: 11254138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rpoH gene encoding heat shock sigma factor sigma32 of psychrophilic bacterium Colwellia maris.
    Yamauchi S; Okuyama H; Nishiyama Y; Hayashi H
    Extremophiles; 2006 Apr; 10(2):149-58. PubMed ID: 16362517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli.
    Kanemori M; Nishihara K; Yanagi H; Yura T
    J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heat shock response of Escherichia coli.
    Arsène F; Tomoyasu T; Bukau B
    Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus.
    da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL
    Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa.
    Benvenisti L; Koby S; Rutman A; Giladi H; Yura T; Oppenheim AB
    Gene; 1995 Mar; 155(1):73-6. PubMed ID: 7698670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor.
    Morita MT; Tanaka Y; Kodama TS; Kyogoku Y; Yanagi H; Yura T
    Genes Dev; 1999 Mar; 13(6):655-65. PubMed ID: 10090722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.