These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Heterologous Expression of a Thermostable α-Glucosidase from Zhang F; Wang W; Bah FBM; Song C; Zhou Y; Ji L; Yuan Y Molecules; 2019 Apr; 24(7):. PubMed ID: 30974879 [TBL] [Abstract][Full Text] [Related]
23. Regulation of the Bacillus subtilis phosphotransacetylase gene. Shin BS; Choi SK; Park SH J Biochem; 1999 Aug; 126(2):333-9. PubMed ID: 10423526 [TBL] [Abstract][Full Text] [Related]
24. L-cysteine biosynthesis in Bacillus subtilis: identification, sequencing, and functional characterization of the gene coding for phosphoadenylylsulfate sulfotransferase. Mansilla MC; de Mendoza D J Bacteriol; 1997 Feb; 179(3):976-81. PubMed ID: 9006060 [TBL] [Abstract][Full Text] [Related]
25. 6-phospho-alpha-D-glucosidase from Fusobacterium mortiferum: cloning, expression, and assignment to family 4 of the glycosylhydrolases. Bouma CL; Reizer J; Reizer A; Robrish SA; Thompson J J Bacteriol; 1997 Jul; 179(13):4129-37. PubMed ID: 9209025 [TBL] [Abstract][Full Text] [Related]
26. The Bacillus stearothermophilus NUB36 surA gene encodes a thermophilic sucrase related to Bacillus subtilis SacA. Li Y; Ferenci T Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1651-7. PubMed ID: 8757729 [TBL] [Abstract][Full Text] [Related]
27. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
28. Maltase-glucoamylase and residual isomaltase in sucrose intolerant patients. Skovbjerg H; Krasilnikoff PA J Pediatr Gastroenterol Nutr; 1986; 5(3):365-71. PubMed ID: 3088247 [TBL] [Abstract][Full Text] [Related]
29. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Galand G Comp Biochem Physiol B; 1989; 94(1):1-11. PubMed ID: 2513162 [TBL] [Abstract][Full Text] [Related]
30. The glucose-regulated protein GRP94 interacts avidly in the endoplasmic reticulum with sucrase-isomaltase isoforms that are associated with congenital sucrase-isomaltase deficiency. Hoter A; Naim HY Int J Biol Macromol; 2021 Sep; 186():237-243. PubMed ID: 34242650 [TBL] [Abstract][Full Text] [Related]
31. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Nagarajan DR; Krishnan C Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075 [TBL] [Abstract][Full Text] [Related]
32. Isolation of Bacillus subtilis mutants pleiotropically insensitive to glucose catabolite repression. Fisher SH; Magasanik B J Bacteriol; 1984 Mar; 157(3):942-4. PubMed ID: 6421803 [TBL] [Abstract][Full Text] [Related]
33. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. Grundy FJ; Waters DA; Allen SH; Henkin TM J Bacteriol; 1993 Nov; 175(22):7348-55. PubMed ID: 8226682 [TBL] [Abstract][Full Text] [Related]
34. Cloning and expression in Escherichia coli of the sucrase gene from Bacillus subtilis. Fouet A; Klier A; Rapoport G Mol Gen Genet; 1982; 186(3):399-404. PubMed ID: 6811836 [TBL] [Abstract][Full Text] [Related]
35. alpha-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates. Hung VS; Hatada Y; Goda S; Lu J; Hidaka Y; Li Z; Akita M; Ohta Y; Watanabe K; Matsui H; Ito S; Horikoshi K Appl Microbiol Biotechnol; 2005 Oct; 68(6):757-65. PubMed ID: 15940457 [TBL] [Abstract][Full Text] [Related]
36. Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene. Naim HY; Niermann T; Kleinhans U; Hollenberg CP; Strasser AW FEBS Lett; 1991 Dec; 294(1-2):109-12. PubMed ID: 1743281 [TBL] [Abstract][Full Text] [Related]
37. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913 [TBL] [Abstract][Full Text] [Related]
38. Hydrolysis of low-molecular-weight oligosaccharides and oligosaccharide alditols by pig intestinal sucrase/isomaltase and glucosidase/maltase. Hertel S; Heinz F; Vogel M Carbohydr Res; 2000 Jun; 326(4):264-76. PubMed ID: 10890274 [TBL] [Abstract][Full Text] [Related]
39. Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. Hoefsloot LH; Hoogeveen-Westerveld M; Kroos MA; van Beeumen J; Reuser AJ; Oostra BA EMBO J; 1988 Jun; 7(6):1697-704. PubMed ID: 3049072 [TBL] [Abstract][Full Text] [Related]
40. Cloning of maltase gene from a methylotrophic yeast, Hansenula polymorpha. Liiv L; Pärn P; Alamäe T Gene; 2001 Mar; 265(1-2):77-85. PubMed ID: 11255010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]