BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 9575146)

  • 1. Nod factor perception: an integrative view of molecular communication during legume symbiosis.
    Ghantasala S; Roy Choudhury S
    Plant Mol Biol; 2022 Dec; 110(6):485-509. PubMed ID: 36040570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean.
    Liu Y; Ma B; Chen W; Schlaeppi K; Erb M; Stirling E; Hu L; Wang E; Zhang Y; Zhao K; Lu Z; Ye S; Xu J
    Front Microbiol; 2021; 12():709012. PubMed ID: 34925249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural and functional workings of KEOPS.
    Beenstock J; Sicheri F
    Nucleic Acids Res; 2021 Nov; 49(19):10818-10834. PubMed ID: 34614169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae.
    Stępkowski T; Banasiewicz J; Granada CE; Andrews M; Passaglia LMP
    Genes (Basel); 2018 Mar; 9(3):. PubMed ID: 29538303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants.
    Poinsot V; Crook MB; Erdn S; Maillet F; Bascaules A; Ané JM
    Carbohydr Res; 2016 Nov; 434():83-93. PubMed ID: 27623438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis.
    López-Baena FJ; Ruiz-Sainz JE; Rodríguez-Carvajal MA; Vinardell JM
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation.
    del Cerro P; Rolla-Santos AA; Gomes DF; Marks BB; Pérez-Montaño F; Rodríguez-Carvajal MÁ; Nakatani AS; Gil-Serrano A; Megías M; Ollero FJ; Hungria M
    BMC Genomics; 2015 Mar; 16(1):251. PubMed ID: 25880529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commonalities and differences among symbiosis islands of three Mesorhizobium loti strains.
    Kasai-Maita H; Hirakawa H; Nakamura Y; Kaneko T; Miki K; Maruya J; Okazaki S; Tabata S; Saeki K; Sato S
    Microbes Environ; 2013; 28(2):275-8. PubMed ID: 23666538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies.
    Sugawara M; Epstein B; Badgley BD; Unno T; Xu L; Reese J; Gyaneshwar P; Denny R; Mudge J; Bharti AK; Farmer AD; May GD; Woodward JE; Médigue C; Vallenet D; Lajus A; Rouy Z; Martinez-Vaz B; Tiffin P; Young ND; Sadowsky MJ
    Genome Biol; 2013 Feb; 14(2):R17. PubMed ID: 23425606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers.
    Kellmann R; Mihali TK; Neilan BA
    J Mol Evol; 2008 Nov; 67(5):526-38. PubMed ID: 18850059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genistein stimulon of Bradyrhizobium japonicum.
    Lang K; Lindemann A; Hauser F; Göttfert M
    Mol Genet Genomics; 2008 Mar; 279(3):203-11. PubMed ID: 18214545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees.
    Stepkowski T; Hughes CE; Law IJ; Markiewicz Ł; Gurda D; Chlebicka A; Moulin L
    Appl Environ Microbiol; 2007 May; 73(10):3254-64. PubMed ID: 17400786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa.
    Stepkowski T; Moulin L; Krzyzańska A; McInnes A; Law IJ; Howieson J
    Appl Environ Microbiol; 2005 Nov; 71(11):7041-52. PubMed ID: 16269740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic locus required for antigenic maturation of Rhizobium etli CE3 lipopolysaccharide.
    Duelli DM; Tobin A; Box JM; Kolli VS; Carlson RW; Noel KD
    J Bacteriol; 2001 Oct; 183(20):6054-64. PubMed ID: 11567006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome.
    Göttfert M; Röthlisberger S; Kündig C; Beck C; Marty R; Hennecke H
    J Bacteriol; 2001 Feb; 183(4):1405-12. PubMed ID: 11157954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of O-acetyl and O-carbamoyl esters of N-acetyl-glucosamine by decomposition of their oxonium ions. Application to the structure of the nonreducing terminal residue of Nod factors.
    Treilhou M; Ferro M; Monteiro C; Poinsot V; Jabbouri S; Kanony C; Promé D; Promé JC
    J Am Soc Mass Spectrom; 2000 Apr; 11(4):301-11. PubMed ID: 10757166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of symbiotic promiscuity.
    Perret X; Staehelin C; Broughton WJ
    Microbiol Mol Biol Rev; 2000 Mar; 64(1):180-201. PubMed ID: 10704479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity.
    Berck S; Perret X; Quesada-Vincens D; Promé J; Broughton WJ; Jabbouri S
    J Bacteriol; 1999 Feb; 181(3):957-64. PubMed ID: 9922261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors.
    Jabbouri S; Relić B; Hanin M; Kamalaprija P; Burger U; Promé D; Promé JC; Broughton WJ
    J Biol Chem; 1998 May; 273(20):12047-55. PubMed ID: 9575146
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.