BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 9575205)

  • 21. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP.
    Ortega J; Singh SK; Ishikawa T; Maurizi MR; Steven AC
    Mol Cell; 2000 Dec; 6(6):1515-21. PubMed ID: 11163224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternating translocation of protein substrates from both ends of ClpXP protease.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    EMBO J; 2002 Sep; 21(18):4938-49. PubMed ID: 12234933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli.
    Wojtkowiak D; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Oct; 268(30):22609-17. PubMed ID: 8226769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY.
    Kessel M; Wu W; Gottesman S; Kocsis E; Steven AC; Maurizi MR
    FEBS Lett; 1996 Dec; 398(2-3):274-8. PubMed ID: 8977122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition.
    Jones JM; Welty DJ; Nakai H
    J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.
    Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M
    EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli.
    Weichart D; Querfurth N; Dreger M; Hengge-Aronis R
    J Bacteriol; 2003 Jan; 185(1):115-25. PubMed ID: 12486047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity and specificity of Escherichia coli ClpAP protease in cleaving model peptide substrates.
    Thompson MW; Maurizi MR
    J Biol Chem; 1994 Jul; 269(27):18201-8. PubMed ID: 8027081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity.
    Pak M; Hoskins JR; Singh SK; Maurizi MR; Wickner S
    J Biol Chem; 1999 Jul; 274(27):19316-22. PubMed ID: 10383442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli.
    Stephani K; Weichart D; Hengge R
    Mol Microbiol; 2003 Sep; 49(6):1605-14. PubMed ID: 12950924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis.
    Thompson MW; Singh SK; Maurizi MR
    J Biol Chem; 1994 Jul; 269(27):18209-15. PubMed ID: 8027082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.
    Amor AJ; Schmitz KR; Sello JK; Baker TA; Sauer RT
    ACS Chem Biol; 2016 Jun; 11(6):1552-1560. PubMed ID: 27003103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems.
    Makovets S; Titheradge AJ; Murray NE
    Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.