These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9575298)

  • 1. Release of acetylcholine from embryonic myocytes in Xenopus cell cultures.
    Fu WM; Liou HC; Chen YH; Wang SM
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):497-506. PubMed ID: 9575298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of acetylcholine release by intracellular acidification of developing motoneurons in Xenopus cell cultures.
    Chen YH; Wu ML; Fu WM
    J Physiol; 1998 Feb; 507 ( Pt 1)(Pt 1):41-53. PubMed ID: 9490814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of quantal secretion from developing motoneurons by postsynaptic activity-dependent release of NT-3.
    Liou JC; Fu WM
    J Neurosci; 1997 Apr; 17(7):2459-68. PubMed ID: 9065506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous quantal transmitter secretion from myocytes and fibroblasts: comparison with neuronal secretion.
    Girod R; Popov S; Alder J; Zheng JQ; Lohof A; Poo MM
    J Neurosci; 1995 Apr; 15(4):2826-38. PubMed ID: 7722632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target-dependent regulation of acetylcholine secretion at developing motoneurons in Xenopus cell cultures.
    Liou JC; Chen YH; Fu WM
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):721-30. PubMed ID: 10358113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evoked acetylcholine release by immortalized brain endothelial cells genetically modified to express choline acetyltransferase and/or the vesicular acetylcholine transporter.
    Malo M; Diebler MF; Prado de Carvalho L; Meunier FM; Dunant Y; Bloc A; Stinnakre J; Tomasi M; Tchélingérian J; Couraud PO; Israël M
    J Neurochem; 1999 Oct; 73(4):1483-91. PubMed ID: 10501193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyltranferase cDNAs.
    Bloc A; Bugnard E; Dunant Y; Falk-Vairant J; Israël M; Loctin F; Roulet E
    Eur J Neurosci; 1999 May; 11(5):1523-34. PubMed ID: 10215905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three types of transmitter release from embryonic neurons.
    Poo MM; Sun YA; Young SH
    J Physiol (Paris); 1985; 80(4):283-9. PubMed ID: 3009797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of ACh release from exposed frog nerve terminals: constraints on interpretation of non-quantal release.
    Grinnell AD; Gundersen CB; Meriney SD; Young SH
    J Physiol; 1989 Dec; 419():225-51. PubMed ID: 2621630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantal and non-quantal ACh release at developing Xenopus neuromuscular junctions in culture.
    Young SH; Grinnell AD
    J Physiol; 1994 Mar; 475(2):207-16. PubMed ID: 8021828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of neurotransmitter release by activation of presynaptic glutamate receptors at developing neuromuscular synapses of Xenopus.
    Fu WM; Liou JC; Lee YH; Liou HC
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):813-23. PubMed ID: 8788945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine 5'-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells.
    Igusa Y
    J Physiol; 1988 Nov; 405():169-85. PubMed ID: 2475606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for acetylcholine receptor blockade by intracellular hydrogen ions in cultured chick myoballs.
    Goldberg G; Lass Y
    J Physiol; 1983 Oct; 343():429-37. PubMed ID: 6644622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine sensitivity in myotubes of nerve-muscle co-culture cultured with anti-muscle antibodies, alpha-bungarotoxin and D-tubocurarine.
    Kimura M; Shikada K; Nojima H; Kimura I
    Int J Dev Neurosci; 1986; 4(1):61-7. PubMed ID: 3455573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica.
    Nishimura K; Kitamura Y; Taniguchi T; Agata K
    Neuroscience; 2010 Jun; 168(1):18-30. PubMed ID: 20338223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous release of transmitter from growth cones of embryonic neurones.
    Young SH; Poo MM
    Nature; 1983 Oct 13-19; 305(5935):634-7. PubMed ID: 6312327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine-sensitive muscarinic K+ channels in mammalian ventricular myocytes.
    Koumi S; Wasserstrom JA
    Am J Physiol; 1994 May; 266(5 Pt 2):H1812-21. PubMed ID: 8203580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiation of acetylcholine responses in Xenopus embryonic muscle cells by dibutyryl cAMP.
    Fu WM
    Pflugers Arch; 1993 Dec; 425(5-6):439-45. PubMed ID: 7510878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental change in the modulation of acetylcholine receptor channel by protein kinase C activation in Xenopus embryonic muscle cells.
    Fu WM; Lin JL
    Neurosci Lett; 1993 Dec; 164(1-2):97-100. PubMed ID: 7512251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of quantal secretion by neurotrophic factors at developing motoneurons in Xenopus cell cultures.
    Liou JC; Yang RS; Fu WM
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):129-39. PubMed ID: 9288681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.