These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 957530)

  • 1. Interpretation of disaccharide-dependent electrical potential differences in the small intestine.
    Igarashi Y; Saito Y; Himukai M; Hoshi T
    Jpn J Physiol; 1976; 26(1):79-92. PubMed ID: 957530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine.
    Parson DS; Prichard JS
    J Physiol; 1971 Jan; 212(2):299-319. PubMed ID: 5548008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disaccharide absorption by amphibian small intestine in vitro.
    Parsons DS; Prichard JS
    J Physiol; 1968 Nov; 199(1):137-50. PubMed ID: 5684031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system.
    Ramaswamy K; Malathi P; Caspary WF; Crane RK
    Biochim Biophys Acta; 1974 Apr; 345(1):39-48. PubMed ID: 4838205
    [No Abstract]   [Full Text] [Related]  

  • 5. Disaccharide uptake by brush-border membrane vesicles lacking the corresponding hydrolases.
    Brot-Laroche E; Alvarado F
    Biochim Biophys Acta; 1984 Aug; 775(2):175-81. PubMed ID: 6432045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of a novel disaccharide transporter in lobster hepatopancreas.
    Scheffler O; Ahearn GA
    J Comp Physiol B; 2017 May; 187(4):563-573. PubMed ID: 28180997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis-dependent absorption of disaccharides in the rat small intestine (chronic experiments and mathematical modeling).
    Gromova LV; Gruzdkov AA
    Gen Physiol Biophys; 1999 Jun; 18(2):209-24. PubMed ID: 10517294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the spatial relationship between intestinal disaccharidases and the phlorizin-sensitive transport of glucose.
    Sacktor B; Wu NC
    Arch Biochem Biophys; 1971 May; 144(1):423-7. PubMed ID: 5117533
    [No Abstract]   [Full Text] [Related]  

  • 9. Brush border disaccharidases in dog kidney and their spatial relationship to glucose transport receptors.
    Silverman M
    J Clin Invest; 1973 Oct; 52(10):2486-94. PubMed ID: 4729044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of sugar-evoked transmural potential differences in intestine of rats with streptozotocin-induced diabetes.
    Tsuji Y; Yamada K; Hosoya N; Moriuchi S
    J Nutr Sci Vitaminol (Tokyo); 1985 Jun; 31(3):317-26. PubMed ID: 4067665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate absorption. Studies on the glucose transport by isolated brush border membranes. A contribution towards an understanding of the molecular mechanism of sugar absorption.
    Hopper U
    Bibl Nutr Dieta; 1975; (22):42-9. PubMed ID: 1095010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of amino acids, dipeptides and disaccharides on the electric potential across rat small intestine.
    Kohn PG; Smyth DH; Wright EM
    J Physiol; 1968 Jun; 196(3):723-46. PubMed ID: 5664239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal metabolism and transport of alpha-disaccharide conjugates: the role of disaccharidase in the Na+/glucose cotransporter-mediated transport.
    Mizuma T; Awazu S
    Res Commun Mol Pathol Pharmacol; 1998 Apr; 100(1):43-52. PubMed ID: 9644718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal small intestinal mucosal injury. Maintenance of glucose and glucose polymer absorption, attenuation of disaccharide absorption.
    Palacios M; Madariaga H; Heitlinger L; Lee PC; Lebenthal E
    Dig Dis Sci; 1989 Mar; 34(3):385-9. PubMed ID: 2493365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of L-tryptophan transport by di- and polysaccharides in the small intestine of chicks.
    Kushak R; Basova N; Beker V; Feldmane A
    Comp Biochem Physiol A Comp Physiol; 1984; 79(1):185-7. PubMed ID: 6148181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoosmotic transport of fluid across the hamster small intestine in the presence of phlorizin-induced inhibition of sugar transport.
    Dinda PK; Beck M; Beck IT
    Can J Physiol Pharmacol; 1975 Jun; 53(3):375-82. PubMed ID: 1148924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mucosal hyperosmolarity on active sugar transport and the sugar-evoked potential in isolated small intestine of the toad.
    Saito Y; Hoshi T
    Jpn J Physiol; 1973 Aug; 23(4):419-34. PubMed ID: 4543511
    [No Abstract]   [Full Text] [Related]  

  • 18. Intestinal disaccharidase activities in the chick.
    Siddons RC
    Biochem J; 1969 Mar; 112(1):51-9. PubMed ID: 5774506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disaccharide hydrolysis, intestinal absorption and electrogenic properties in salmonella enterocolitis in mice.
    Madge DS
    Digestion; 1974; 11(1-2):25-38. PubMed ID: 4452423
    [No Abstract]   [Full Text] [Related]  

  • 20. [Proceedings: Disaccharides digestion at the membrane and disaccharides-evoked potentials at the brush border of the small intestines].
    Igarashi Y; Saito T; Hoshi T
    Nihon Seirigaku Zasshi; 1974 Sep; 36(8-9):371. PubMed ID: 4478537
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.