These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 957531)

  • 1. A mechanochemical model for the steady and transient contractions of the skeletal muscle.
    Akazawa K; Yamamoto M; Fujii K; Mashima H
    Jpn J Physiol; 1976; 26(1):9-28. PubMed ID: 957531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A distribution-moment model of energetics in skeletal muscle.
    Ma SP; Zahalak GI
    J Biomech; 1991; 24(1):21-35. PubMed ID: 2026631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced potential model of muscular contraction mechanism and myosin molecular structure.
    Mitsui T
    Adv Biophys; 1999; 36():107-58. PubMed ID: 10463074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle.
    Piazzesi G; Lombardi V
    Biophys J; 1995 May; 68(5):1966-79. PubMed ID: 7612839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the rapid regeneration of the actin-myosin working stroke with a tight coupling model of muscle contraction.
    Piazzesi G; Lombardi V
    J Muscle Res Cell Motil; 1996 Feb; 17(1):45-53. PubMed ID: 8740431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-velocity relation in deuterium oxide-treated frog single muscle fibres during the rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1981 Aug; 317():207-21. PubMed ID: 6273545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stiffness under isotonic releases during a twitch of a frog muscle fibre.
    Haugen P
    Adv Exp Med Biol; 1988; 226():461-71. PubMed ID: 3261490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-velocity relation of frog skeletal muscle fibres shortening under continuously changing load.
    Iwamoto H; Sugaya R; Sugi H
    J Physiol; 1990 Mar; 422():185-202. PubMed ID: 2352179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction.
    Sweeney HL; Stull JT
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):414-8. PubMed ID: 2136951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced potential model for muscular contraction mechanism, including two attached states of myosin head.
    Mitsui T; Kumagai S; Chiba H; Yoshimura H; Ohshima H
    J Theor Biol; 1998 May; 192(1):35-41. PubMed ID: 9628837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initiation of active contraction by photogeneration of adenosine-5'-triphosphate in rabbit psoas muscle fibres.
    Goldman YE; Hibberd MG; Trentham DR
    J Physiol; 1984 Sep; 354():605-24. PubMed ID: 6481646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical model of the frog skeletal muscle--analysis of non-linear mechanical properties.
    Akazawa K; Fujii K
    Front Med Biol Eng; 1989; 1(4):331-40. PubMed ID: 2486920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of regeneration of cross-bridge power stroke in shortening muscle.
    Piazzesi G; Linari M; Lombardi V
    Adv Exp Med Biol; 1993; 332():691-700; discussion 700-1. PubMed ID: 8109379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling concentric contraction of muscle using an improved cross-bridge model.
    Wu JZ; Herzog W
    J Biomech; 1999 Aug; 32(8):837-48. PubMed ID: 10433426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-velocity relation in normal and nitrate-treated frog single muscle fibres during rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1978 Dec; 285():257-73. PubMed ID: 311382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship.
    Chin L; Yue P; Feng JJ; Seow CY
    Biophys J; 2006 Nov; 91(10):3653-63. PubMed ID: 16935957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.