BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9575313)

  • 1. Various pathogenetic factors revolving around the central role of protein kinase C activation in the occurrence of cerebral vasospasm.
    Asano T; Matsui T
    Crit Rev Neurosurg; 1998 May; 8(3):176-87. PubMed ID: 9575313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of Connexin 40 Mediated by Nitric Oxide Attenuates Cerebral Vasospasm After Subarachnoid Hemorrhage via the Nitric Oxide-Cyclic Guanosine Monophosphate-Protein Kinase G Pathway.
    Lan SH; Lai WT; Zheng SY; Yang L; Fang LC; Zhou L; Tang B; Duan J; Hong T
    World Neurosurg; 2020 Apr; 136():e476-e486. PubMed ID: 31953101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant therapy against cerebral vasospasm following aneurysmal subarachnoid hemorrhage.
    Asano T; Matsui T
    Cell Mol Neurobiol; 1999 Feb; 19(1):31-44. PubMed ID: 10079963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelation between protein kinase C and nitric oxide in the development of vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Yamamoto S; Uemura K
    Neurol Res; 1996 Feb; 18(1):89-95. PubMed ID: 8714544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase C and cerebral vasospasm.
    Laher I; Zhang JH
    J Cereb Blood Flow Metab; 2001 Aug; 21(8):887-906. PubMed ID: 11487724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysfunction of nitric oxide induces protein kinase C activation resulting in vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Yamamoto S; Yokoyama T; Uemura K
    Neurol Res; 1997 Oct; 19(5):558-62. PubMed ID: 9329037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obligatory roles of protein kinase C and nitric oxide in the regulation of cerebral vascular tone: an implication of a pathogenesis of vasospasm after subarachnoid haemorrhage.
    Nishizawa S; Yokota N; Yokoyama T; Uemura K
    Acta Neurochir (Wien); 1998; 140(10):1063-8. PubMed ID: 9856250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronological changes of arterial diameter, cGMP, and protein kinase C in the development of vasospasm.
    Nishizawa S; Yamamoto S; Yokoyama T; Ryu H; Uemura K
    Stroke; 1995 Oct; 26(10):1916-20; discussion 1920-1. PubMed ID: 7570748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions.
    Asano T
    Crit Rev Neurosurg; 1999 Sep; 9(5):303-318. PubMed ID: 10525849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelin-1 promotes Ca2+ antagonist-insensitive coronary smooth muscle contraction via activation of epsilon-protein kinase C.
    McNair LL; Salamanca DA; Khalil RA
    Hypertension; 2004 Apr; 43(4):897-904. PubMed ID: 14981072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous elevation of intracellular Ca2+ is essential for the development of cerebral vasospasm.
    Tani E; Matsumoto T
    Curr Vasc Pharmacol; 2004 Jan; 2(1):13-21. PubMed ID: 15320829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between protein kinase C and calmodulin systems in cerebrovascular contraction: investigation of the pathogenesis of vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Peterson JW; Shimoyama I; Uemura K
    Neurosurgery; 1992 Oct; 31(4):711-6. PubMed ID: 1407457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm.
    Matsui T; Takuwa Y; Johshita H; Yamashita K; Asano T
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):143-9. PubMed ID: 1983998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of guanylyl cyclase-A/atrial natriuretic peptide receptor blocks the activation of protein kinase C in vascular smooth muscle cells. Role of cGMP and cGMP-dependent protein kinase.
    Kumar R; Cartledge WA; Lincoln TM; Pandey KN
    Hypertension; 1997 Jan; 29(1 Pt 2):414-21. PubMed ID: 9039136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase.
    Koide M; Nishizawa S; Ohta S; Yokoyama T; Namba H
    Neurosurgery; 2002 Dec; 51(6):1468-74; discussion 1474-6. PubMed ID: 12445353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial dysfunction and vascular disease - a 30th anniversary update.
    Vanhoutte PM; Shimokawa H; Feletou M; Tang EH
    Acta Physiol (Oxf); 2017 Jan; 219(1):22-96. PubMed ID: 26706498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular selectivity and vasospasmolytic action of the novel calcium antagonist (+/-)-(E)-1-(3-fluoro-6, 11-dihydrodibenz[b,e]oxepin-11-yl)-4-(3-phenyl-2-propenyl)-piperazine dimaleate in isolated cerebral arteries of the rabbit and dog.
    Minato H; Hashizume M; Masuda Y; Fujitani B; Hosoki K
    Arzneimittelforschung; 1997 Apr; 47(4):339-46. PubMed ID: 9150852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H; Katusic ZS
    Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of vasoconstriction induced by endothelin-1 in smooth muscle of rabbit mesenteric artery.
    Yoshida M; Suzuki A; Itoh T
    J Physiol; 1994 Jun; 477(Pt 2):253-65. PubMed ID: 7932217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin-1 initiates the development of vasospasm after subarachnoid haemorrhage through protein kinase C activation, but does not contribute to prolonged vasospasm.
    Nishizawa S; Chen D; Yokoyama T; Yokota N; Otha S
    Acta Neurochir (Wien); 2000; 142(12):1409-15. PubMed ID: 11214636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.