BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9575887)

  • 1. Effect of growth hormone on renal and systemic acid-base homeostasis in humans.
    Sicuro A; Mahlbacher K; Hulter HN; Krapf R
    Am J Physiol; 1998 Apr; 274(4):F650-7. PubMed ID: 9575887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of growth hormone-induced stimulation of renal acidification in humans: effect of dietary NaCl.
    Jehle S; Hulter HN; Krapf R
    Clin Sci (Lond); 2000 Jul; 99(1):47-56. PubMed ID: 10887057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients.
    Henger A; Tutt P; Riesen WF; Hulter HN; Krapf R
    J Lab Clin Med; 2000 Nov; 136(5):379-89. PubMed ID: 11079465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth hormone corrects acidosis-induced renal nitrogen wasting and renal phosphate depletion and attenuates renal magnesium wasting in humans.
    Mahlbacher K; Sicuro A; Gerber H; Hulter HN; Krapf R
    Metabolism; 1999 Jun; 48(6):763-70. PubMed ID: 10381152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glucocorticoid steroids on renal and systemic acid-base metabolism.
    Hulter HN; Licht JH; Bonner EL; Glynn RD; Sebastian A
    Am J Physiol; 1980 Jul; 239(1):F30-43. PubMed ID: 7395993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of endothelin-1 in renal regulation of acid-base equilibrium in acidotic humans.
    Pallini A; Hulter HN; Muser J; Krapf R
    Am J Physiol Renal Physiol; 2012 Oct; 303(7):F991-9. PubMed ID: 22859405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium.
    Krapf R; Beeler I; Hertner D; Hulter HN
    N Engl J Med; 1991 May; 324(20):1394-401. PubMed ID: 1902283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudohypoaldosteronism type II: proximal renal tubular acidosis and dDAVP-sensitive renal hyperkalemia.
    Nahum H; Paillard M; Prigent A; Leviel F; Bichara M; Gardin JP; Idatte JM
    Am J Nephrol; 1986; 6(4):253-62. PubMed ID: 3777034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials.
    Buehlmeier J; Remer T; Frings-Meuthen P; Maser-Gluth C; Heer M
    Endocrine; 2016 Apr; 52(1):139-47. PubMed ID: 26349936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal and systemic acid-base effects of chronic dichloroacetate administration in dogs.
    Hulter HN; Glynn RD; Sebastian A
    Metabolism; 1980 Oct; 29(10):997-1002. PubMed ID: 7421587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease.
    Welbourne T; Weber M; Bank N
    J Clin Invest; 1972 Jul; 51(7):1852-60. PubMed ID: 4555786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of potassium chloride and bicarbonate on thiazide-induced reduction in urinary calcium excretion.
    Frassetto LA; Nash E; Morris RC; Sebastian A
    Kidney Int; 2000 Aug; 58(2):748-52. PubMed ID: 10916098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pendrin in the mouse kidney is primarily regulated by Cl- excretion but also by systemic metabolic acidosis.
    Hafner P; Grimaldi R; Capuano P; Capasso G; Wagner CA
    Am J Physiol Cell Physiol; 2008 Dec; 295(6):C1658-67. PubMed ID: 18971389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of extracellular fluid volume depletion on renal regulation of acid-base and potassium equilibrium during prolonged mineral acid administration.
    Hulter HN; Toto RD; Sebastian A; Mackie S; Cooke CR; Wilson TE; Melby JC
    J Lab Clin Med; 1984 Jun; 103(6):854-68. PubMed ID: 6726056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid and mineral balances and bone in familial proximal renal tubular acidosis.
    Lemann J; Adams ND; Wilz DR; Brenes LG
    Kidney Int; 2000 Sep; 58(3):1267-77. PubMed ID: 10972690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal and systemic acid-base effects of chronic spironolactone administration.
    Hulter HN; Bonner EL; Glynn RD; Sebastian A
    Am J Physiol; 1981 May; 240(5):F381-7. PubMed ID: 7235011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chronic hypotonic volume expansion on the renal regulation of acid-base equilibrium.
    Lowance DC; Garfinkel HB; Mattern WD; Schwartz WB
    J Clin Invest; 1972 Nov; 51(11):2928-40. PubMed ID: 5080418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans.
    Brüngger M; Hulter HN; Krapf R
    Kidney Int; 1997 Jan; 51(1):216-21. PubMed ID: 8995736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired renal H+ secretion and NH3 production in mineralocorticoid-deficient glucocorticoid-replete dogs.
    Hulter HN; Ilnicki LP; Harbottle JA; Sebastian A
    Am J Physiol; 1977 Feb; 232(2):F136-46. PubMed ID: 14506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mineralocorticoid replacement therapy on renal acid-base homeostasis in adrenalectomized patients.
    Sebastian A; Sutton JM; Hulter HN; Schambelan M; Poler SM
    Kidney Int; 1980 Dec; 18(6):762-73. PubMed ID: 7206460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.