BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9575902)

  • 1. Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide.
    Abassi Z; Gurbanov K; Rubinstein I; Better OS; Hoffman A; Winaver J
    Am J Physiol; 1998 Apr; 274(4):F766-74. PubMed ID: 9575902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of ET(A) and ET(B) in the renal tissue of rats with compensated and decompensated heart failure.
    Francis BN; Abassi Z; Heyman S; Winaver J; Hoffman A
    J Cardiovasc Pharmacol; 2004 Nov; 44 Suppl 1():S362-5. PubMed ID: 15838321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of renal regional blood flow by endothelin-1.
    Gurbanov K; Rubinstein I; Hoffman A; Abassi Z; Better OS; Winaver J
    Am J Physiol; 1996 Dec; 271(6 Pt 2):F1166-72. PubMed ID: 8997390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired nitric oxide-mediated renal vasodilation in rats with experimental heart failure: role of angiotensin II.
    Abassi ZA; Gurbanov K; Mulroney SE; Potlog C; Opgenorth TJ; Hoffman A; Haramati A; Winaver J
    Circulation; 1997 Nov; 96(10):3655-64. PubMed ID: 9396468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional role of ETB receptors in the renal medulla.
    Vassileva I; Mountain C; Pollock DM
    Hypertension; 2003 Jun; 41(6):1359-63. PubMed ID: 12719443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrarenal expression and distribution of cyclooxygenase isoforms in rats with experimental heart failure.
    Abassi Z; Brodsky S; Gealekman O; Rubinstein I; Hoffman A; Winaver J
    Am J Physiol Renal Physiol; 2001 Jan; 280(1):F43-53. PubMed ID: 11133513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of NO and cytochrome P-450-derived eicosanoids in ET-1-induced changes in intrarenal hemodynamics in rats.
    Hercule HC; Oyekan AO
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2132-41. PubMed ID: 11080078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin 1 type a receptor antagonism prevents vascular dysfunction and hypertension induced by 11beta-hydroxysteroid dehydrogenase inhibition: role of nitric oxide.
    Ruschitzka F; Quaschning T; Noll G; deGottardi A; Rossier MF; Enseleit F; Hürlimann D; Lüscher TF; Shaw SG
    Circulation; 2001 Jun; 103(25):3129-35. PubMed ID: 11425780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of endothelin receptors ET(A) and ET(B) blockade on renal haemodynamics in normal rats and in rats with experimental congestive heart failure.
    Abassi Z; Francis B; Wessale J; Ovcharenko E; Winaver J; Hoffman A
    Clin Sci (Lond); 2002 Aug; 103 Suppl 48():245S-248S. PubMed ID: 12193096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronary vasoconstriction by endothelin-1 in anesthetized goats: role of endothelin receptors, nitric oxide and prostanoids.
    García JL; Fernández N; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Eur J Pharmacol; 1996 Nov; 315(2):179-86. PubMed ID: 8960882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary endothelinergic system in experimental congestive heart failure.
    Lepailleur-Enouf D; Egidy G; Philippe M; Louedec L; Henry J; Mulder P; Michel J
    Cardiovasc Res; 2001 Feb; 49(2):330-9. PubMed ID: 11164843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of U46619 on renal regional hemodynamics in the rat: involvement of endothelin.
    Hantz H; Adesuyi A; Adebayo O
    J Pharmacol Exp Ther; 2001 Oct; 299(1):372-6. PubMed ID: 11561101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrarenal distribution of blood flow in sodium depleted and sodium loaded rats: role of nitric oxide.
    Hably C; Vág J; Tost H; Csabai Z; Bartha J
    Kidney Blood Press Res; 2001; 24(3):166-75. PubMed ID: 11528209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
    Cowley AW
    Exp Physiol; 2000 Mar; 85 Spec No():223S-231S. PubMed ID: 10795926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.