These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 9575919)

  • 1. Conduction between isolated rabbit Purkinje and ventricular myocytes coupled by a variable resistance.
    Huelsing DJ; Spitzer KW; Cordeiro JM; Pollard AE
    Am J Physiol; 1998 Apr; 274(4):H1163-73. PubMed ID: 9575919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of repolarization in rabbit Purkinje and ventricular myocytes coupled by a variable resistance.
    Huelsing DJ; Spitzer KW; Cordeiro JM; Pollard AE
    Am J Physiol; 1999 Feb; 276(2):H572-81. PubMed ID: 9950859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrotonic suppression of early afterdepolarizations in isolated rabbit Purkinje myocytes.
    Huelsing DJ; Spitzer KW; Pollard AE
    Am J Physiol Heart Circ Physiol; 2000 Jul; 279(1):H250-9. PubMed ID: 10899064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discontinuous conduction at Purkinje-ventricular muscle junction.
    Wiedmann RT; Tan RC; Joyner RW
    Am J Physiol; 1996 Oct; 271(4 Pt 2):H1507-16. PubMed ID: 8897946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance.
    Joyner RW; Sugiura H; Tan RC
    Biophys J; 1991 Nov; 60(5):1038-45. PubMed ID: 1760503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unidirectional block between Purkinje and ventricular layers of papillary muscles.
    Overholt ED; Joyner RW; Veenstra RD; Rawling D; Wiedmann R
    Am J Physiol; 1984 Oct; 247(4 Pt 2):H584-95. PubMed ID: 6496703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of Purkinje-myocardial coupling to suppression and facilitation of early afterdepolarization-induced triggered activity.
    Schafferhofer-Steltzer I; Hofer E; Huelsing DJ; Bishop SP; Pollard AE
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1522-31. PubMed ID: 16189965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue.
    Cabo C; Barr RC
    Ann Biomed Eng; 1993; 21(6):633-44. PubMed ID: 8116915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal velocity and safety of discontinuous conduction through the heterogeneous Purkinje-ventricular junction.
    Aslanidi OV; Stewart P; Boyett MR; Zhang H
    Biophys J; 2009 Jul; 97(1):20-39. PubMed ID: 19580741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanisms for electrical heterogeneity between rabbit Purkinje fiber and ventricular cells.
    Aslanidi OV; Sleiman RN; Boyett MR; Hancox JC; Zhang H
    Biophys J; 2010 Jun; 98(11):2420-31. PubMed ID: 20513385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conduction block in Purkinje fibers by homogeneous versus localized decrease of the gap junction conductance.
    Daleau P; Délèze J
    Can J Physiol Pharmacol; 1998 Jun; 76(6):630-41. PubMed ID: 9923401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of octanol on canine subendocardial Purkinje-to-ventricular transmission.
    Joyner RW; Overholt ED
    Am J Physiol; 1985 Dec; 249(6 Pt 2):H1228-31. PubMed ID: 3000199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two types of action potential configuration in single cardiac Purkinje cells of sheep.
    Verkerk AO; Veldkamp MW; Abbate F; Antoons G; Bouman LN; Ravesloot JH; van Ginneken AC
    Am J Physiol; 1999 Oct; 277(4):H1299-310. PubMed ID: 10516164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of circus movement re-entry across canine Purkinje fibre-muscle junctions.
    Gilmour RF; Watanabe M
    J Physiol; 1994 May; 476(3):473-85. PubMed ID: 8057255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From the Purkinje fibres to the ventricle: One dimensional computer simulation for the healthy and failing heart.
    Li J; Logantha SJ; Yanni J; Cai X; Dobrzynski H; Hart G; Boyett MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():34-7. PubMed ID: 26736194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Ca2+ dynamics of Purkinje fibers and its interconnection with subjacent ventricular myocytes.
    Hamamoto T; Tanaka H; Mani H; Tanabe T; Fujiwara K; Nakagami T; Horie M; Oyamada M; Takamatsu T
    J Mol Cell Cardiol; 2005 Apr; 38(4):561-9. PubMed ID: 15808833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study.
    Henriquez AP; Vogel R; Muller-Borer BJ; Henriquez CS; Weingart R; Cascio WE
    Biophys J; 2001 Oct; 81(4):2112-21. PubMed ID: 11566782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic spontaneous calcium release events and sodium channelopathies promote ventricular arrhythmias.
    Campos FO; Shiferaw Y; Vigmond EJ; Plank G
    Chaos; 2017 Sep; 27(9):093910. PubMed ID: 28964108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Purkinje-myocardial coupling during ventricular arrhythmia: a modeling study.
    Behradfar E; Nygren A; Vigmond EJ
    PLoS One; 2014; 9(2):e88000. PubMed ID: 24516576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent block by tetrodotoxin of the sodium channel in rabbit cardiac Purkinje fibers.
    Carmeliet E
    Biophys J; 1987 Jan; 51(1):109-14. PubMed ID: 2432950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.