These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9575928)

  • 1. Dissociation between volume blood flow and laser-Doppler signal from rat muscle during changes in vascular tone.
    Kuznetsova LV; Tomasek N; Sigurdsson GH; Banic A; Erni D; Wheatley AM
    Am J Physiol; 1998 Apr; 274(4):H1248-54. PubMed ID: 9575928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of autoregulation and vasoconstrictors on hindquarters vascular resistance.
    Meininger GA; Trzeciakowski JP
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1032-41. PubMed ID: 2330992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased microvascular vasomotion and myogenic response in rat skeletal muscle in association with acute insulin resistance.
    Newman JM; Dwyer RM; St-Pierre P; Richards SM; Clark MG; Rattigan S
    J Physiol; 2009 Jun; 587(Pt 11):2579-88. PubMed ID: 19403615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin stimulates laser Doppler signal by rat muscle in vivo, consistent with nutritive flow recruitment.
    Clark AD; Barrett EJ; Rattigan S; Wallis MG; Clark MG
    Clin Sci (Lond); 2001 Mar; 100(3):283-90. PubMed ID: 11222114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of angiotensin II on flux rise time in rats (a time index of laser Doppler flowmetry) and its relation with microvascular structures.
    Hsu TL; Chao PT; Jan MY; Wang WK; Li SP; Wang YY
    Microvasc Res; 2008 Mar; 75(2):211-6. PubMed ID: 17727899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vascular origin of slow wave flowmotion in skeletal muscle during local hypotension.
    Schmidt JA; Borgström P; Intaglietta M
    Int J Microcirc Clin Exp; 1993 Jun; 12(3):287-97. PubMed ID: 8375963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of the laser Doppler flow signal from the liver of the rat.
    Wheatley AM; Almond NE; Stuart ET; Zhao D
    Microvasc Res; 1993 May; 45(3):290-301. PubMed ID: 8321143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splanchnic vasoconstriction by angiotensin II is arterial pressure dependent.
    Broomé M; Aneman A; Lehtipalo S; Arnerlöv C; Johansson G; Winsö O; Biber B
    Acta Anaesthesiol Scand; 2002 Jan; 46(1):57-63. PubMed ID: 11903073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased pressure in venous sinusoids during decongestion of rat nasal mucosa induced by adrenergic agonists.
    Kristiansen AB; Heyeraas KJ; Kirkebø A
    Acta Physiol Scand; 1993 Feb; 147(2):151-61. PubMed ID: 7682748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limb-specific differences in the skin vascular responsiveness to adrenergic agonists.
    Yamazaki F; Yuge N
    J Appl Physiol (1985); 2011 Jul; 111(1):170-6. PubMed ID: 21527669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doppler ultrasonography and single-fiber laser Doppler flowmetry for measurement of hind limb blood flow in anesthetized horses.
    Raisis AL; Young LE; Taylor PM; Walsh KP; Lekeux P
    Am J Vet Res; 2000 Mar; 61(3):286-90. PubMed ID: 10714520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of laser Doppler flowmetry in perfused muscle indicative of nutritive and nonnutritive flow.
    Clark AD; Youd JM; Rattigan S; Barrett EJ; Clark MG
    Am J Physiol Heart Circ Physiol; 2001 Mar; 280(3):H1324-33. PubMed ID: 11179080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow.
    Smits GJ; Roman RJ; Lombard JH
    J Appl Physiol (1985); 1986 Aug; 61(2):666-72. PubMed ID: 2943717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cervical spinal cord stimulation on cerebral blood flow in the rat.
    Sagher O; Huang DL
    J Neurosurg; 2000 Jul; 93(1 Suppl):71-6. PubMed ID: 10879761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue viability imaging for assessment of pharmacologically induced vasodilation and vasoconstriction in human skin.
    Petersen LJ; Zacho HD; Lyngholm AM; Arendt-Nielsen L
    Microvasc Res; 2010 Dec; 80(3):499-504. PubMed ID: 20691707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of muscle blood flow by laser-Doppler flowmetry during hemorrhage in SHR.
    Lombard JH; Roman RJ
    Am J Physiol; 1990 Sep; 259(3 Pt 2):H860-5. PubMed ID: 2204279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent vasodilatory signalling modulates α
    Hearon CM; Kirby BS; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2016 Dec; 594(24):7435-7453. PubMed ID: 27561916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nitric oxide synthesis blockade and angiotensin II on blood flow and spontaneous vasomotion in the rat cerebral microcirculation.
    Morita-Tsuzuki Y; Bouskela E; Hardebo JE
    Acta Physiol Scand; 1993 Aug; 148(4):449-54. PubMed ID: 8213199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous prostaglandins limit angiotensin-II induced regional vasoconstriction in conscious rats.
    Stebbins CL; Symons JD; Hageman KS; Musch TI
    J Cardiovasc Pharmacol; 2003 Jul; 42(1):10-6. PubMed ID: 12827020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal and femoral venous blood flows are regulated by different mechanisms dependent on α-adrenergic receptor subtypes and nitric oxide in anesthetized rats.
    Fioretti AC; Ogihara CA; Cafarchio EM; Venancio DP; de Almeida RL; Antonio BB; Sato MA
    Vascul Pharmacol; 2017 Dec; 99():53-64. PubMed ID: 28986330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.