These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 9576111)

  • 21. Success and failure of biphasic shocks: results of bidomain simulations.
    Anderson C; Trayanova NA
    Math Biosci; 2001 Dec; 174(2):91-109. PubMed ID: 11730859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength.
    Cates AW; Wolf PD; Hillsley RE; Souza JJ; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1994 Jul; 17(7):1208-17. PubMed ID: 7937226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of shock strengths on ventricular defibrillation failure.
    Chattipakorn N; Banville I; Gray RA; Ideker RE
    Cardiovasc Res; 2004 Jan; 61(1):39-44. PubMed ID: 14732200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanisms of electrical defibrillation].
    Reek S; Ideker RE
    Herzschrittmacherther Elektrophysiol; 1997 Mar; 8(1):4-14. PubMed ID: 19495673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart.
    Dillon SM
    Circulation; 1992 May; 85(5):1865-78. PubMed ID: 1572042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping.
    Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F
    J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative efficacy of monophasic and biphasic truncated exponential shocks for nonthoracotomy internal defibrillation in dogs.
    Chapman PD; Vetter JW; Souza JJ; Troup PJ; Wetherbee JN; Hoffmann RG
    J Am Coll Cardiol; 1988 Sep; 12(3):739-45. PubMed ID: 3403834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced arrhythmogenicity of biphasic versus monophasic T-wave shocks. Implications for defibrillation efficacy.
    Behrens S; Li C; Kirchhof P; Fabritz FL; Franz MR
    Circulation; 1996 Oct; 94(8):1974-80. PubMed ID: 8873676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficacy and safety of monophasic and biphasic waveform shocks using a braided endocardial defibrillation lead system.
    Saksena S; Scott SE; Accorti PR; Boveja BK; Abels D; Callaghan FJ
    Am Heart J; 1990 Dec; 120(6 Pt 1):1342-7. PubMed ID: 2248181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reentry site during fibrillation induction in relation to defibrillation efficacy for different shock waveforms.
    Ideker RE; Alferness C; Melnick S; Sreenan KM; Johnson E; Smith WM
    J Cardiovasc Electrophysiol; 2001 May; 12(5):581-91. PubMed ID: 11386521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arrhythmogenic changes in action potential configuration in the ventricle induced by DC shocks.
    Kodama I; Sakuma I; Shibata N; Honjo H; Toyama J
    J Electrocardiol; 1999; 32 Suppl():92-9. PubMed ID: 10688309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of defibrillation shock energy and timing on 3-D computer model of heart.
    Province RA; Fishler MG; Thakor NV
    Ann Biomed Eng; 1993; 21(1):19-31. PubMed ID: 8434817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shock-induced dispersion of ventricular repolarization: implications for the induction of ventricular fibrillation and the upper limit of vulnerability.
    Behrens S; Li C; Fabritz CL; Kirchhof PF; Franz MR
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):998-1008. PubMed ID: 9300297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved efficacy of anodal biphasic defibrillation shocks following a failed defibrillation attempt.
    Roberts PR; Allen S; Smith DC; Urban JF; Euler DE; Kallok MJ; Morgan JM
    Pacing Clin Electrophysiol; 1999 Dec; 22(12):1753-9. PubMed ID: 10642128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles.
    Rodríguez B; Trayanova N
    J Electrocardiol; 2003; 36 Suppl():51-6. PubMed ID: 14716592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of atrial defibrillation shocks on the ventricles in isolated sheep hearts.
    Gray RA; Jalife J
    Circulation; 1998 Apr; 97(16):1613-22. PubMed ID: 9593567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of lidocaine on shock-induced vulnerability.
    Li L; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S237-48. PubMed ID: 14760929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postshock arrhythmogenesis in a slice of the canine heart.
    Hillebrenner MG; Eason JC; Campbell CA; Trayanova NA
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S249-56. PubMed ID: 14760930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing of the upper limit of vulnerability is different for monophasic and biphasic shocks: implications for the determination of the defibrillation threshold.
    Behrens S; Li C; Franz MR
    Pacing Clin Electrophysiol; 1997 Sep; 20(9 Pt 1):2179-87. PubMed ID: 9309741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.