BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9576479)

  • 1. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels.
    Dzeja PP; Terzic A
    FASEB J; 1998 May; 12(7):523-9. PubMed ID: 9576479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.
    Carrasco AJ; Dzeja PP; Alekseev AE; Pucar D; Zingman LV; Abraham MR; Hodgson D; Bienengraeber M; Puceat M; Janssen E; Wieringa B; Terzic A
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7623-8. PubMed ID: 11390963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes.
    Dzeja PP; Zeleznikar RJ; Goldberg ND
    Mol Cell Biochem; 1998 Jul; 184(1-2):169-82. PubMed ID: 9746320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment.
    Selivanov VA; Alekseev AE; Hodgson DM; Dzeja PP; Terzic A
    Mol Cell Biochem; 2004; 256-257(1-2):243-56. PubMed ID: 14977185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-T15 cells.
    Olson LK; Schroeder W; Robertson RP; Goldberg ND; Walseth TF
    J Biol Chem; 1996 Jul; 271(28):16544-52. PubMed ID: 8663240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channels: metabolic sensing and cardioprotection.
    Zingman LV; Alekseev AE; Hodgson-Zingman DM; Terzic A
    J Appl Physiol (1985); 2007 Nov; 103(5):1888-93. PubMed ID: 17641217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two sites for adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic beta-cells and HIT cells.
    Hopkins WF; Fatherazi S; Peter-Riesch B; Corkey BE; Cook DL
    J Membr Biol; 1992 Sep; 129(3):287-95. PubMed ID: 1433280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity.
    Elvir-Mairena JR; Jovanovic A; Gomez LA; Alekseev AE; Terzic A
    J Biol Chem; 1996 Dec; 271(50):31903-8. PubMed ID: 8943234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance.
    Zingman LV; Alekseev AE; Bienengraeber M; Hodgson D; Karger AB; Dzeja PP; Terzic A
    Neuron; 2001 Aug; 31(2):233-45. PubMed ID: 11502255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart.
    Alekseev AE; Hodgson DM; Karger AB; Park S; Zingman LV; Terzic A
    J Mol Cell Cardiol; 2005 Jun; 38(6):895-905. PubMed ID: 15910874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells.
    Schulze DU; Düfer M; Wieringa B; Krippeit-Drews P; Drews G
    Diabetologia; 2007 Oct; 50(10):2126-34. PubMed ID: 17704905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KATP channels gated by intracellular nucleotides and phospholipids.
    Baukrowitz T; Fakler B
    Eur J Biochem; 2000 Oct; 267(19):5842-8. PubMed ID: 10998043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gating of nucleotide-sensitive K+ channels in insulin-secreting cells can be modulated by changes in the ratio ATP4-/ADP3- and by nonhydrolyzable derivatives of both ATP and ADP.
    Dunne MJ; West-Jordan JA; Abraham RJ; Edwards RH; Petersen OH
    J Membr Biol; 1988 Sep; 104(2):165-77. PubMed ID: 3057214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out.
    Abraham MR; Selivanov VA; Hodgson DM; Pucar D; Zingman LV; Wieringa B; Dzeja PP; Alekseev AE; Terzic A
    J Biol Chem; 2002 Jul; 277(27):24427-34. PubMed ID: 11967264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux.
    Tarasov A; Dusonchet J; Ashcroft F
    Diabetes; 2004 Dec; 53 Suppl 3():S113-22. PubMed ID: 15561898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.
    Michailova A; Saucerman J; Belik ME; McCulloch AD
    Biophys J; 2005 Mar; 88(3):2234-49. PubMed ID: 15738467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions.
    Yegutkin GG; Henttinen T; Jalkanen S
    FASEB J; 2001 Jan; 15(1):251-260. PubMed ID: 11149913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pyridine nucleotides on the gating of ATP-sensitive potassium channels in insulin-secreting cells.
    Dunne MJ; Findlay I; Petersen OH
    J Membr Biol; 1988 Jun; 102(3):205-16. PubMed ID: 3050116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein.
    Kamouchi M; Kitamura K
    Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle.
    Zeleznikar RJ; Dzeja PP; Goldberg ND
    J Biol Chem; 1995 Mar; 270(13):7311-9. PubMed ID: 7706272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.