These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 957650)
1. Analysis of clamps with time dependent voltages in the squid axon using a kinetic transport model. Starzak ME J Theor Biol; 1976 Mar; 57(1):153-69. PubMed ID: 957650 [No Abstract] [Full Text] [Related]
2. A model of the activation process of Na+ conductance in the squid axon: an approach with interactive desorption kinetics of divalent cations. Goto H J Theor Biol; 1975 Sep; 53(2):309-25. PubMed ID: 1195765 [No Abstract] [Full Text] [Related]
3. Ion movements and kinetics in squid axon II. Spontaneous electrical fluctuations. Fishman HM; Moore LE; Poussart D Ann N Y Acad Sci; 1977 Dec; 303():399-428. PubMed ID: 290306 [No Abstract] [Full Text] [Related]
4. Contribution of sodium pump to resting potential of squid giant axon. de Weer P; Geduldig D Am J Physiol; 1978 Jul; 235(1):C55-62. PubMed ID: 677301 [TBL] [Abstract][Full Text] [Related]
5. Effect of protein cross-linking reagents on membrane currents of squid axon. Horn R; Brodwick MS; Eaton DC Am J Physiol; 1980 Mar; 238(3):C127-32. PubMed ID: 6768309 [TBL] [Abstract][Full Text] [Related]
6. Single-ion electrodiffusion models of the late sodium and potassium currents in the giant axon of the squid. Hägglund JV J Membr Biol; 1972; 10(2):153-70. PubMed ID: 4669445 [No Abstract] [Full Text] [Related]
7. Action of extracellular pH on Na+ and K+ membrane currents in the giant axon of Loligo vulgaris. Carbone E; Fioravanti R; Prestipino G; Wanke E J Membr Biol; 1978 Nov; 43(4):295-315. PubMed ID: 32397 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of activation of the sodium conductance in the squid giant axon. Keynes RD; Kimura JE J Physiol; 1983 Mar; 336():621-34. PubMed ID: 6308231 [TBL] [Abstract][Full Text] [Related]
9. Activation, inactivation, and chemical blockage of the gating current in squid giant axons. Meves H Ann N Y Acad Sci; 1977 Dec; 303():322-41. PubMed ID: 290300 [No Abstract] [Full Text] [Related]
11. Increase in sodium permeability of squid axon membranes by -dihydrograyanotoxin II. Seyama I; Narahashi T J Pharmacol Exp Ther; 1973 Feb; 184(2):299-307. PubMed ID: 4688172 [No Abstract] [Full Text] [Related]
12. Effects of membrane potential on sodium and potassium fluxes in squid axons. Brinley FJ; Mullins LJ Ann N Y Acad Sci; 1974; 242(0):406-33. PubMed ID: 4215359 [No Abstract] [Full Text] [Related]
13. Modeling repetitive firing and bursting in a small unmyelinated nerve fiber. Scriven DR Biophys J; 1981 Sep; 35(3):715-30. PubMed ID: 7272458 [TBL] [Abstract][Full Text] [Related]
14. Stoichiometry and voltage dependence of the Na+/K+ pump in squid giant axons and Xenopus oocytes. Rakowski RF Soc Gen Physiol Ser; 1991; 46():339-53. PubMed ID: 1653991 [No Abstract] [Full Text] [Related]
16. Electric current generated by squid giant axon sodium pump: external K and internal ADP effects. Abercrombie RF; de Weer P Am J Physiol; 1978 Jul; 235(1):C63-8. PubMed ID: 677302 [TBL] [Abstract][Full Text] [Related]
17. Excitability blockade of the squid giant axon by the venom of Latrodectus mactans (black widow spider). Gruener R Toxicon; 1973 Feb; 11(2):155-66. PubMed ID: 4715494 [No Abstract] [Full Text] [Related]
18. Unidirectional sodium and potassium fluxes through the sodium channel of squid giant axons. Busath D; Begenisich T Biophys J; 1982 Oct; 40(1):41-9. PubMed ID: 6291657 [TBL] [Abstract][Full Text] [Related]
19. A voltage-clamp study of the effects of colchicine on the squid giant axon. Chang DC J Cell Physiol; 1983 Jun; 115(3):260-4. PubMed ID: 6853606 [TBL] [Abstract][Full Text] [Related]
20. Ion movements and kinetics in squid axon I. Complex admittance. Poussart D; Moore LE; Fishman HM Ann N Y Acad Sci; 1977 Dec; 303():355-81. PubMed ID: 290302 [No Abstract] [Full Text] [Related] [Next] [New Search]