These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 9576879)

  • 1. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies.
    Biewener AA; Konieczynski DD; Baudinette RV
    J Exp Biol; 1998 Jun; 201(Pt 11):1681-94. PubMed ID: 9576879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping.
    Biewener AA; McGowan C; Card GM; Baudinette RV
    J Exp Biol; 2004 Jan; 207(Pt 2):211-23. PubMed ID: 14668306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo muscle force and elastic energy storage during steady-speed hopping of tammar wallabies (Macropus eugenii).
    Biewener A; Baudinette R
    J Exp Biol; 1995; 198(Pt 9):1829-41. PubMed ID: 9319738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.
    Prilutsky BI; Herzog W; Leonard TR; Allinger TL
    J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling of the ankle extensor muscle-tendon units and the biomechanical implications for bipedal hopping locomotion in the post-pouch kangaroo Macropus fuliginosus.
    Snelling EP; Biewener AA; Hu Q; Taggart DA; Fuller A; Mitchell D; Maloney SK; Seymour RS
    J Anat; 2017 Dec; 231(6):921-930. PubMed ID: 29034479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of proximal muscle function during level versus incline hopping in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2007 Apr; 210(Pt 7):1255-65. PubMed ID: 17371924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of muscle design and force patterns.
    Prilutsky BI; Herzog W; Allinger TL
    J Exp Biol; 1996 Apr; 199(Pt 4):801-14. PubMed ID: 8788087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of goat distal hind limb muscle-tendon function in response to locomotor grade.
    McGuigan MP; Yoo E; Lee DV; Biewener AA
    J Exp Biol; 2009 Jul; 212(Pt 13):2092-104. PubMed ID: 19525436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-tendon stresses and elastic energy storage during locomotion in the horse.
    Biewener AA
    Comp Biochem Physiol B Biochem Mol Biol; 1998 May; 120(1):73-87. PubMed ID: 9787779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of mallard (Anas platyrynchos) gastrocnemius function during swimming versus terrestrial locomotion.
    Biewener AA; Corning WR
    J Exp Biol; 2001 May; 204(Pt 10):1745-56. PubMed ID: 11316495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running.
    Gabaldón AM; Nelson FE; Roberts TJ
    J Exp Biol; 2004 Jun; 207(Pt 13):2277-88. PubMed ID: 15159432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential design for hopping in two species of wallabies.
    McGowan CP; Baudinette RV; Biewener AA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):151-8. PubMed ID: 16861021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos.
    Morgan DL; Proske U; Warren D
    J Physiol; 1978 Sep; 282():253-61. PubMed ID: 722527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The integrated function of muscles and tendons during locomotion.
    Roberts TJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1087-99. PubMed ID: 12485693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI; Herzog W; Leonard T
    J Biomech; 1996 Apr; 29(4):391-403. PubMed ID: 8964769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.