These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9577228)

  • 1. Reconstructing the protein-water interface.
    Makarov VA; Andrews BK; Pettitt BM
    Biopolymers; 1998 Jun; 45(7):469-78. PubMed ID: 9577228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly parallelizable integral equation theory for three dimensional solvent distribution function: application to biomolecules.
    Yokogawa D; Sato H; Imai T; Sakaki S
    J Chem Phys; 2009 Feb; 130(6):064111. PubMed ID: 19222271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces.
    Jiang L; Kuhlman B; Kortemme T; Baker D
    Proteins; 2005 Mar; 58(4):893-904. PubMed ID: 15651050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale networks of hydration water molecules around proteins investigated by cryogenic X-ray crystallography.
    Nakasako M
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):767-90. PubMed ID: 11728092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hydration structures around hydrophilic surfaces of proteins by using the empirical hydration distribution functions from a database analysis.
    Matsuoka D; Nakasako M
    J Phys Chem B; 2010 Apr; 114(13):4652-63. PubMed ID: 20201497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures.
    Jiang JS; Brünger AT
    J Mol Biol; 1994 Oct; 243(1):100-15. PubMed ID: 7932732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the denaturation of human alpha-lactalbumin in urea by molecular dynamics simulations.
    Smith LJ; Jones RM; van Gunsteren WF
    Proteins; 2005 Feb; 58(2):439-49. PubMed ID: 15558602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do water molecules mediate protein-DNA recognition?
    Reddy CK; Das A; Jayaram B
    J Mol Biol; 2001 Nov; 314(3):619-32. PubMed ID: 11846571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth dependent dynamics in the hydration shell of a protein.
    Servantie J; Atilgan C; Atilgan AR
    J Chem Phys; 2010 Aug; 133(8):085101. PubMed ID: 20815594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.
    Dolenc J; Baron R; Missimer JH; Steinmetz MO; van Gunsteren WF
    Chembiochem; 2008 Jul; 9(11):1749-56. PubMed ID: 18553323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear response theory: an alternative to PB and GB methods for the analysis of molecular dynamics trajectories?
    Morreale A; de la Cruz X; Meyer T; Gelpí JL; Luque FJ; Orozco M
    Proteins; 2004 Nov; 57(3):458-67. PubMed ID: 15382247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple solvent crystal structures of ribonuclease A: an assessment of the method.
    Dechene M; Wink G; Smith M; Swartz P; Mattos C
    Proteins; 2009 Sep; 76(4):861-81. PubMed ID: 19291738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation.
    Imai T; Hiraoka R; Kovalenko A; Hirata F
    Proteins; 2007 Mar; 66(4):804-13. PubMed ID: 17186526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the application of structure-specific bulk-solvent models.
    Glykos NM
    Acta Crystallogr D Biol Crystallogr; 2011 Aug; 67(Pt 8):739-41. PubMed ID: 21795815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WATGEN: an algorithm for modeling water networks at protein-protein interfaces.
    Bui HH; Schiewe AJ; Haworth IS
    J Comput Chem; 2007 Nov; 28(14):2241-51. PubMed ID: 17471455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.
    Nguyen BL; Pettitt BM
    J Chem Theory Comput; 2015 Apr; 11(4):1399-409. PubMed ID: 26388706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.