These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9577430)

  • 21. A longitudinal study of electrical stimulation levels and electrode impedance in children using the Clarion cochlear implant.
    Henkin Y; Kaplan-Neeman R; Kronenberg J; Migirov L; Hildesheimer M; Muchnik C
    Acta Otolaryngol; 2006 Jun; 126(6):581-6. PubMed ID: 16720441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface examination of electrodes of removed implants.
    Rozman J; Pihlar B; Strojnik P
    Scand J Rehabil Med Suppl; 1988; 17():99-103. PubMed ID: 3261042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sacral nerve stimulation for voiding dysfunction: One institution's 11-year experience.
    Sutherland SE; Lavers A; Carlson A; Holtz C; Kesha J; Siegel SW
    Neurourol Urodyn; 2007; 26(1):19-28; discussion 36. PubMed ID: 17078071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode.
    Polasek KH; Hoyen HA; Keith MW; Tyler DJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):76-82. PubMed ID: 17436879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional electrical stimulation of the latissimus dorsi muscle for use in cardiac assist.
    Malek AM; Mark RG
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):781-8. PubMed ID: 2787286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.
    Petrofsky J; Suh HJ; Fish A; Hernandez V; Abdo A; Collins K; Mendoza E; Yang TN
    J Med Eng Technol; 2008; 32(5):371-84. PubMed ID: 18821415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modiolar coiling, electrical thresholds, and speech perception after cochlear implantation using the nucleus contour advance electrode with the advance off stylet technique.
    Huang TC; Reitzen SD; Marrinan MS; Waltzman SB; Roland JT
    Otol Neurotol; 2006 Feb; 27(2):159-66. PubMed ID: 16436984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Original electronic design to perform epimysial and neural stimulation in paraplegia.
    Guiraud D; Stieglitz T; Taroni G; Divoux JL
    J Neural Eng; 2006 Dec; 3(4):276-86. PubMed ID: 17124331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems.
    O'Dwyer SB; O'Keeffe DT; Coote S; Lyons GM
    Med Eng Phys; 2006 Mar; 28(2):166-76. PubMed ID: 15936975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The tissue response to epimysial electrodes for diaphragm pacing in dogs.
    Schmit BD; Mortimer JT
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):921-30. PubMed ID: 9311161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up.
    Guiraud D; Stieglitz T; Koch KP; Divoux JL; Rabischong P
    J Neural Eng; 2006 Dec; 3(4):268-75. PubMed ID: 17124330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of the impedance of a thin hydrogel electrode on sensation during functional electrical stimulation.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Wang W
    Med Eng Phys; 2008 Jul; 30(6):739-46. PubMed ID: 17942361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical spinal cord stimulation in the long-term treatment of chronic painful diabetic neuropathy.
    Daousi C; Benbow SJ; MacFarlane IA
    Diabet Med; 2005 Apr; 22(4):393-8. PubMed ID: 15787662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implantable flexible electrodes for functional electrical stimulation.
    Schneider A; Stieglitz T
    Med Device Technol; 2004; 15(1):16-8. PubMed ID: 14994633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a 2-, 3- and 4-electrode stimulator design on current dispersion on the surface and into the limb during electrical stimulation in controls and patients with wounds.
    Petrofsky J; Lawson D; Prowse M; Suh HJ
    J Med Eng Technol; 2008; 32(6):485-97. PubMed ID: 19005963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters.
    Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET
    Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity.
    Polasek KH; Hoyen HA; Keith MW; Kirsch RF; Tyler DJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):428-37. PubMed ID: 19775987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.