These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 9578083)

  • 1. Neuropathologic applications of immunohistochemical fiber typing in the non-neoplastic muscle biopsy.
    Rojiani AM; Cho ES
    Mod Pathol; 1998 Apr; 11(4):334-8. PubMed ID: 9578083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-type differentiation by myosin immunohistochemistry on paraffin-embedded skeletal muscle. A useful adjunct to fiber typing by the adenosine triphosphatase reaction.
    Jay V; Becker LE
    Arch Pathol Lab Med; 1994 Sep; 118(9):917-8. PubMed ID: 8080362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reperfusion injury to skeletal muscle affects primarily type II muscle fibers.
    Chan RK; Austen WG; Ibrahim S; Ding GY; Verna N; Hechtman HB; Moore FD
    J Surg Res; 2004 Nov; 122(1):54-60. PubMed ID: 15522315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type and regional diversity in the distribution of myosin heavy chains in chicken intrafusal muscle fibers.
    Maier A
    Anat Rec; 1994 Dec; 240(4):507-15. PubMed ID: 7879902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congenital fiber-type disproportion myopathy with type I fiber predominance and type II fiber smallness and atrophy--a sterological analysis.
    Rao TV; Koul RL; Inuwa IM
    Clin Neuropathol; 2005; 24(1):26-31. PubMed ID: 15696781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometric analysis of canine skeletal muscles following experimental callus distraction according to the Ilizarov method.
    Fink B; Neuen-Jacob E; Madej M; Lienert A; Rüther W
    J Orthop Res; 2000 Jul; 18(4):620-8. PubMed ID: 11052499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel myosin heavy chain immunohistochemical double staining developed for the routine diagnostic separation of I, IIA and IIX fibers.
    Raheem O; Huovinen S; Suominen T; Haapasalo H; Udd B
    Acta Neuropathol; 2010 Apr; 119(4):495-500. PubMed ID: 20107819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congenital myopathy with focal loss of cross striations: a case report with morphologic and immunohistochemical study.
    Yun Y; Bergmann M; Klein H; Sternowsky HJ
    Gen Diagn Pathol; 1995 Oct; 141(2):155-60. PubMed ID: 8548596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.
    Callister RJ; Pierce PA; McDonagh JC; Stuart DG
    J Morphol; 2005 Apr; 264(1):62-74. PubMed ID: 15732049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of thyroidectomy on fast and slow muscle fibres of rat gastrocnemius muscle.
    Vashishta N; Talesara CL
    Indian J Exp Biol; 2000 Jun; 38(6):575-9. PubMed ID: 11116528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fixation and preservation conditions on immunohistochemical profiles of the skeletal muscle fibers in Japanese macaques.
    Kojima R; Medina MF; Jouffroy FK; Okada M
    Z Morphol Anthropol; 2002 Mar; 83(2-3):315-24. PubMed ID: 12050901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytophotometrical and immunohistochemical analysis of soft palate muscles of children with isolated cleft palate and combined cleft lip and palate.
    Krey KF; Dannhauer KH; Hemprich A; Zaitsev S; Bankfalvi A; Buchwalow IB; Punkt K
    Exp Toxicol Pathol; 2002 Jul; 54(1):69-75. PubMed ID: 12180805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ki-67 in carcinoma of the breast: from the frozen to the paraffin sections].
    Ghidoni D; Folicaldi S; Errani E; Borgini B; Bondi A
    Pathologica; 1996 Aug; 88(4):270-4. PubMed ID: 9005395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide synthase in the heterogeneous population of intramural striated muscle fibres of the human membranous urethral sphincter.
    Ho KM; McMurray G; Brading AF; Noble JG; Ny L; Andersson KE
    J Urol; 1998 Mar; 159(3):1091-6. PubMed ID: 9474237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle fiber typing in routinely processed skeletal muscle with monoclonal antibodies.
    Havenith MG; Visser R; Schrijvers-van Schendel JM; Bosman FT
    Histochemistry; 1990; 93(5):497-9. PubMed ID: 2139640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide synthase II in rat skeletal muscles.
    Punkt K; Naupert A; Wellner M; Asmussen G; Schmidt C; Buchwalow IB
    Histochem Cell Biol; 2002 Nov; 118(5):371-9. PubMed ID: 12432448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postmortem alterations in the pH range of myofibrillar ATPase activation/inactivation.
    Jump SS; Schuenke MD; Staron RS
    Histochem Cell Biol; 2003 Feb; 119(2):161-8. PubMed ID: 12610735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related skeletal muscle atrophy in humans: an immunohistochemical and morphometric study.
    Nikolić M; Malnar-Dragojević D; Bobinac D; Bajek S; Jerković R; Soić-Vranić T
    Coll Antropol; 2001 Dec; 25(2):545-53. PubMed ID: 11811285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histochemical analysis of fiber composition of skeletal muscles in pigeons and chickens.
    Wada N; Miyata H; Tomita R; Ozawa S; Tokuriki M
    Arch Ital Biol; 1999 Feb; 137(1):75-82. PubMed ID: 9934435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myopathy-dependent changes in activity of ATPase, SDH and GPDH and NOS expression in the different fibre types of hamster muscles.
    Punkt K; Zaitsev S; Wellner M; Schreiter T; Fitzl G; Buchwalow IB
    Acta Histochem; 2002; 104(1):15-22. PubMed ID: 11993846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.