These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9578367)

  • 1. Skeletal muscle fatigue in normal subjects and heart failure patients. Is there a common mechanism?
    Lunde PK; Verburg E; Vøllestad NK; Sejersted OM
    Acta Physiol Scand; 1998 Mar; 162(3):215-28. PubMed ID: 9578367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans.
    McKenna MJ; Medved I; Goodman CA; Brown MJ; Bjorksten AR; Murphy KT; Petersen AC; Sostaric S; Gong X
    J Physiol; 2006 Oct; 576(Pt 1):279-88. PubMed ID: 16840514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle.
    Fink RH; Veigel C
    Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue.
    Lunde PK; Sejersted OM; Thorud HM; Tønnessen T; Henriksen UL; Christensen G; Westerblad H; Bruton J
    Circ Res; 2006 Jun; 98(12):1514-9. PubMed ID: 16690878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.
    Benders AA; Wevers RA; Veerkamp JH
    Acta Physiol Scand; 1996 Mar; 156(3):355-67. PubMed ID: 8729696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation pumps in skeletal muscle: potential role in muscle fatigue.
    Green HJ
    Acta Physiol Scand; 1998 Mar; 162(3):201-13. PubMed ID: 9578366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport.
    Nielsen OB; Overgaard K
    Acta Physiol Scand; 1996 Mar; 156(3):247-56. PubMed ID: 8729684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue.
    Steele DS; Duke AM
    Acta Physiol Scand; 2003 Sep; 179(1):39-48. PubMed ID: 12940937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in skeletal muscle SR Ca2+ pump in congestive heart failure due to myocardial infarction are prevented by angiotensin II blockade.
    Shah KR; Ganguly PK; Netticadan T; Arneja AS; Dhalla NS
    Can J Physiol Pharmacol; 2004 Jul; 82(7):438-47. PubMed ID: 15389290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-K+ pump regulation and skeletal muscle contractility.
    Clausen T
    Physiol Rev; 2003 Oct; 83(4):1269-324. PubMed ID: 14506306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump?
    Verburg E; Hallén J; Sejersted OM; Vøllestad NK
    Acta Physiol Scand; 1999 Apr; 165(4):357-67. PubMed ID: 10350230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digoxin affects potassium homeostasis during exercise in patients with heart failure.
    Schmidt TA; Bundgaard H; Olesen HL; Secher NH; Kjeldsen K
    Cardiovasc Res; 1995 Apr; 29(4):506-11. PubMed ID: 7796444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced levels of skeletal muscle Na+K+ -ATPase in McArdle disease.
    Haller RG; Clausen T; Vissing J
    Neurology; 1998 Jan; 50(1):37-40. PubMed ID: 9443454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dexamethasone on skeletal muscle Na+,K+ pump subunit specific expression and K+ homeostasis during exercise in humans.
    Nordsborg N; Ovesen J; Thomassen M; Zangenberg M; Jøns C; Iaia FM; Nielsen JJ; Bangsbo J
    J Physiol; 2008 Mar; 586(5):1447-59. PubMed ID: 18174214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+), K(+)-ATPase content in skeletal muscle of dogs with pituitary-dependent hyperadrenocorticism.
    Schotanus BA; Meij BP; Vos IH; Kooistra HS; Everts ME
    Domest Anim Endocrinol; 2006 May; 30(4):320-32. PubMed ID: 16202554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.