BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9578368)

  • 21. Nandrolone decanoate treatment induces changes in contractile responses of rat untrained fast-twitch skeletal muscle.
    Joumaa WH; Serrurier B; Bigard X; Léoty C
    Acta Physiol Scand; 2002 Jul; 175(3):189-99. PubMed ID: 12100358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle.
    Cairns SP; Robinson DM; Loiselle DS
    Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy.
    Edwards JN; Cully TR; Shannon TR; Stephenson DG; Launikonis BS
    J Physiol; 2012 Feb; 590(3):475-92. PubMed ID: 22155929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of low cytoplasmic [ATP] on excitation-contraction coupling in fast-twitch muscle fibres of the rat.
    Dutka TL; Lamb GD
    J Physiol; 2004 Oct; 560(Pt 2):451-68. PubMed ID: 15308682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Modulation of the contractile activity of the fast and slow twitch rat muscle during continuous stimulation].
    Zorova OV; Uspenskiĭ AN
    Ross Fiziol Zh Im I M Sechenova; 1999 Aug; 85(8):1075-9. PubMed ID: 10643601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans.
    Shields RK; Law LF; Reiling B; Sass K; Wilwert J
    J Appl Physiol (1985); 1997 May; 82(5):1499-507. PubMed ID: 9134899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.
    Cully TR; Edwards JN; Murphy RM; Launikonis BS
    J Physiol; 2016 Jun; 594(11):2795-810. PubMed ID: 26775687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Piperine enhances contractile force in slow- and fast-twitch muscle.
    Herskind J; Ørtenblad N; Cheng AJ; Pedersen P; Overgaard K
    J Physiol; 2024 Jun; 602(12):2807-2822. PubMed ID: 38762879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery from fatigue in fast and slow single intact skeletal muscle fibers from aging mouse.
    González E; Delbono O
    Muscle Nerve; 2001 Sep; 24(9):1219-24. PubMed ID: 11494276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ADP on action potential-induced force responses in mechanically skinned rat fast-twitch fibres.
    Macdonald WA; Stephenson DG
    J Physiol; 2004 Sep; 559(Pt 2):433-47. PubMed ID: 15235084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of fatigue on sarcoplasmic reticulum and myofibrillar properties of rat single muscle fibers.
    Danieli-Betto D; Germinario E; Esposito A; Biral D; Betto R
    J Appl Physiol (1985); 2000 Sep; 89(3):891-8. PubMed ID: 10956331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of ammonium ions on the depolarization-induced and direct activation of the contractile apparatus in mechanically skinned fast-twitch skeletal muscle fibres of the rat.
    Stephenson GM; Stephenson DG
    J Muscle Res Cell Motil; 1996 Dec; 17(6):611-6. PubMed ID: 8994080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tubular system excitability: an essential component of excitation-contraction coupling in fast-twitch fibres of vertebrate skeletal muscle.
    Stephenson DG
    J Muscle Res Cell Motil; 2006; 27(5-7):259-74. PubMed ID: 16874453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The amplitude and time course of the myoplasmic free [Ca2+] transient in fast-twitch fibers of mouse muscle.
    Hollingworth S; Zhao M; Baylor SM
    J Gen Physiol; 1996 Nov; 108(5):455-69. PubMed ID: 8923269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.
    Jayasinghe ID; Munro M; Baddeley D; Launikonis BS; Soeller C
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25100314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excitation-contraction coupling and fatigue mechanisms in skeletal muscle: studies with mechanically skinned fibres.
    Lamb GD
    J Muscle Res Cell Motil; 2002; 23(1):81-91. PubMed ID: 12363289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of force during postcontractile depression in single Xenopus muscle fibers.
    Howlett RA; Stary CM; Hogan MC
    Am J Physiol Regul Integr Comp Physiol; 2001 May; 280(5):R1469-75. PubMed ID: 11294770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular calcium movements during excitation-contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers.
    Baylor SM; Hollingworth S
    J Gen Physiol; 2012 Apr; 139(4):261-72. PubMed ID: 22450485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.