These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9578368)

  • 41. Effects of 17beta-estradiol on tension responses and fatigue in the skeletal twitch muscle fibers of frog.
    Hatae J
    Jpn J Physiol; 2001 Dec; 51(6):753-9. PubMed ID: 11846967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic changes in the contractile apparatus during exercise.
    Allen DG
    Acta Physiol (Oxf); 2013 Jul; 208(3):220-1. PubMed ID: 23614972
    [No Abstract]   [Full Text] [Related]  

  • 43. Effects of reduced muscle glycogen on excitation-contraction coupling in rat fast-twitch muscle: a glycogen removal study.
    Watanabe D; Wada M
    J Muscle Res Cell Motil; 2019 Dec; 40(3-4):353-364. PubMed ID: 31236763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The variation in fatigue rate with frequency using kHz frequency alternating current.
    Ward AR; Robertson VJ
    Med Eng Phys; 2000 Nov; 22(9):637-46. PubMed ID: 11259932
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The activation time-course of contractile elements estimated from in vivo fascicle behaviours during twitch contractions.
    Oda T; Himeno R; Hay DC; Kanehisa H; Fukunaga T; Kawakami Y
    J Sports Sci; 2013; 31(11):1233-41. PubMed ID: 23496431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Excitation-contraction-relaxation cycle: role of Ca2+-regulatory membrane proteins in normal, stimulated and pathological skeletal muscle (review).
    Murray BE; Froemming GR; Maguire PB; Ohlendieck K
    Int J Mol Med; 1998 Apr; 1(4):677-87. PubMed ID: 9852282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency response of evoked potential in normal and diseased nerve muscle.
    Nuruki A; Uchida S; Yunokuchi K; Nagaoka R
    IEEE Eng Med Biol Mag; 1999; 18(6):27-32. PubMed ID: 10576069
    [No Abstract]   [Full Text] [Related]  

  • 49. Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice.
    Schwaller B; Dick J; Dhoot G; Carroll S; Vrbova G; Nicotera P; Pette D; Wyss A; Bluethmann H; Hunziker W; Celio MR
    Am J Physiol; 1999 Feb; 276(2):C395-403. PubMed ID: 9950767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement and simulation of myoplasmic calcium transients in mouse slow-twitch muscle fibres.
    Hollingworth S; Kim MM; Baylor SM
    J Physiol; 2012 Feb; 590(3):575-94. PubMed ID: 22124146
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The age related slow and fast contributions to the overall changes in tibialis anterior contractile features disclosed by maximal single twitch scan.
    Orizio C; Cogliati M; Bissolotti L; Diemont B; Gobbo M; Celichowski J
    Arch Gerontol Geriatr; 2016; 66():1-6. PubMed ID: 27164288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fatigue and heat production in repeated contractions of mouse skeletal muscle.
    Barclay CJ; Arnold PD; Gibbs CL
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):741-52. PubMed ID: 8576863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Na channel density in extrajunctional sarcolemma of fast and slow twitch mouse skeletal muscle fibres: functional implications and plasticity after fast motoneuron transplantation on to a slow muscle.
    Milton RL; Behforouz MA
    J Muscle Res Cell Motil; 1995 Aug; 16(4):430-9. PubMed ID: 7499483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Slow recovery of force in single skeletal muscle fibres.
    Lännergren J; Westerblad H; Bruton JD
    Acta Physiol Scand; 1996 Mar; 156(3):193-202. PubMed ID: 8729679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.
    Nelson CR; Debold EP; Fitts RH
    Am J Physiol Cell Physiol; 2014 Nov; 307(10):C939-50. PubMed ID: 25186012
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The excitation-contraction coupling mechanism in skeletal muscle.
    Calderón JC; Bolaños P; Caputo C
    Biophys Rev; 2014 Mar; 6(1):133-160. PubMed ID: 28509964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and function of superfast muscles: new insights into the physiology of skeletal muscle.
    Rome LC
    Annu Rev Physiol; 2006; 68():193-221. PubMed ID: 16460271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Studies on kinetic viscoelasticity of slow muscle fibers--2. Dynamic stiffness changes studied by quick release method and frequency response method].
    Hiraki Y; Kimura H; Mizukawa K; Tabuchi A
    Nippon Ganka Gakkai Zasshi; 2001 Nov; 105(11):745-9. PubMed ID: 11758342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deficiency in parvalbumin increases fatigue resistance in fast-twitch muscle and upregulates mitochondria.
    Chen G; Carroll S; Racay P; Dick J; Pette D; Traub I; Vrbova G; Eggli P; Celio M; Schwaller B
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C114-22. PubMed ID: 11401833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The whistle and the rattle: the design of sound producing muscles.
    Rome LC; Syme DA; Hollingworth S; Lindstedt SL; Baylor SM
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8095-100. PubMed ID: 8755609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.