These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 9578369)

  • 1. New evidence for similarities in excitation-contraction coupling in skeletal and cardiac muscle.
    Wasserstrom JA
    Acta Physiol Scand; 1998 Mar; 162(3):247-52. PubMed ID: 9578369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes.
    Murayama T; Kurebayashi N
    Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling.
    Prosser BL; Wright NT; Hernãndez-Ochoa EO; Varney KM; Liu Y; Olojo RO; Zimmer DB; Weber DJ; Schneider MF
    J Biol Chem; 2008 Feb; 283(8):5046-57. PubMed ID: 18089560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
    Posterino GS; Cellini MA; Lamb GD
    J Physiol; 2003 Mar; 547(Pt 3):807-23. PubMed ID: 12562929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation-contraction coupling in cardiac muscle revisited.
    Lewartowski B
    J Physiol Pharmacol; 2000 Sep; 51(3):371-86. PubMed ID: 11016858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gamma1 subunit.
    Ursu D; Schuhmeier RP; Freichel M; Flockerzi V; Melzer W
    J Gen Physiol; 2004 Nov; 124(5):605-18. PubMed ID: 15504904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2.
    Takeshima H; Komazaki S; Hirose K; Nishi M; Noda T; Iino M
    EMBO J; 1998 Jun; 17(12):3309-16. PubMed ID: 9628868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-induced calcium release in skeletal muscle.
    Endo M
    Physiol Rev; 2009 Oct; 89(4):1153-76. PubMed ID: 19789379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling in skeletal muscle: comparisons with cardiac muscle.
    Lamb GD
    Clin Exp Pharmacol Physiol; 2000 Mar; 27(3):216-24. PubMed ID: 10744351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of ryanodine receptors from skeletal and cardiac muscle during rest and excitation.
    Laver DR
    Clin Exp Pharmacol Physiol; 2006 Nov; 33(11):1107-13. PubMed ID: 17042923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in the study of ryanodine receptor-related muscle diseases].
    Han HM; Yin CC
    Sheng Li Ke Xue Jin Zhan; 2005 Jan; 36(1):18-22. PubMed ID: 15881338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of multiple [3H]ryanodine binding sites on the Ca2+ release channel of sarcoplasmic reticulum from skeletal and cardiac muscle: evidence for a sequential mechanism in ryanodine action.
    Pessah IN; Zimanyi I
    Mol Pharmacol; 1991 May; 39(5):679-89. PubMed ID: 1851961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.
    Pouvreau S; Csernoch L; Allard B; Sabatier JM; De Waard M; Ronjat M; Jacquemond V
    Biophys J; 2006 Sep; 91(6):2206-15. PubMed ID: 16782801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena.
    Ríos E; Stern MD
    Annu Rev Biophys Biomol Struct; 1997; 26():47-82. PubMed ID: 9241413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation-contraction coupling and fatigue mechanisms in skeletal muscle: studies with mechanically skinned fibres.
    Lamb GD
    J Muscle Res Cell Motil; 2002; 23(1):81-91. PubMed ID: 12363289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of excitation-contraction uncoupling relevant to activity-induced muscle fatigue.
    Lamb GD
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):368-72. PubMed ID: 19448700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.