These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9578370)

  • 21. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale.
    Troiano A; Naddeo F; Sosso E; Camarota G; Merletti R; Mesin L
    Gait Posture; 2008 Aug; 28(2):179-86. PubMed ID: 18490165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ.
    Howlett RA; Kelley KM; Grassi B; Gladden LB; Hogan MC
    Exp Physiol; 2005 Nov; 90(6):873-9. PubMed ID: 16118234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions.
    Ravier P; Buttelli O; Jennane R; Couratier P
    J Electromyogr Kinesiol; 2005 Apr; 15(2):210-21. PubMed ID: 15664150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional significance of Ca2+ in long-lasting fatigue of skeletal muscle.
    Westerblad H; Bruton JD; Allen DG; Lännergren J
    Eur J Appl Physiol; 2000 Oct; 83(2-3):166-74. PubMed ID: 11104057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limitations to performance during alpine skiing.
    Ferguson RA
    Exp Physiol; 2010 Mar; 95(3):404-10. PubMed ID: 19897568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle.
    Chin ER; Allen DG
    J Physiol; 1997 Jan; 498 ( Pt 1)(Pt 1):17-29. PubMed ID: 9023765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of force profile during a maximum voluntary isometric contraction task.
    Househam E; McAuley J; Charles T; Lightfoot T; Swash M
    Muscle Nerve; 2004 Mar; 29(3):401-8. PubMed ID: 14981740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle.
    Syme DA; Tonks DM
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R916-26. PubMed ID: 14726426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeletal muscle fatigue: cellular mechanisms.
    Allen DG; Lamb GD; Westerblad H
    Physiol Rev; 2008 Jan; 88(1):287-332. PubMed ID: 18195089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of muscle fatigue and temperature on electromechanical delay.
    Zhou S; Carey MF; Snow RJ; Lawson DL; Morrison WE
    Electromyogr Clin Neurophysiol; 1998 Mar; 38(2):67-73. PubMed ID: 9553743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dantrolene, like fatigue, has a length-dependent effect on submaximal force-length relationships of rat gastrocnemius muscle.
    MacNaughton MB; Campbell JJ; Maclntosh BR
    Acta Physiol (Oxf); 2007 Mar; 189(3):271-8. PubMed ID: 17305707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of intracellular calcium and metabolites in low-frequency fatigue of mouse skeletal muscle.
    Chin ER; Balnave CD; Allen DG
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C550-9. PubMed ID: 9124298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms underlying the slow recovery of force after fatigue: importance of intracellular calcium.
    Bruton JD; Lännergren J; Westerblad H
    Acta Physiol Scand; 1998 Mar; 162(3):285-93. PubMed ID: 9578374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protective effects of lactic acid on force production in rat skeletal muscle.
    Nielsen OB; de Paoli F; Overgaard K
    J Physiol; 2001 Oct; 536(Pt 1):161-6. PubMed ID: 11579166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between metabolic function and skeletal muscle fatigue during a 90 s maximal isometric contraction.
    Sirikul B; Hunter GR; Larson-Meyer DE; Desmond R; Newcomer BR
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):394-9. PubMed ID: 17510673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle cell function during prolonged activity: cellular mechanisms of fatigue.
    Allen DG; Lännergren J; Westerblad H
    Exp Physiol; 1995 Jul; 80(4):497-527. PubMed ID: 7576593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A motor unit-based model of muscle fatigue.
    Potvin JR; Fuglevand AJ
    PLoS Comput Biol; 2017 Jun; 13(6):e1005581. PubMed ID: 28574981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of the fatigue-induced force decline in human skeletal muscle by optimized stimulation trains.
    Binder-Macleod SA; Lee SC; Baadte SA
    Arch Phys Med Rehabil; 1997 Oct; 78(10):1129-37. PubMed ID: 9339165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle fatigue: the role of intracellular calcium stores.
    Allen DG; Kabbara AA; Westerblad Hk
    Can J Appl Physiol; 2002 Feb; 27(1):83-96. PubMed ID: 11880693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.