These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9578374)

  • 1. Mechanisms underlying the slow recovery of force after fatigue: importance of intracellular calcium.
    Bruton JD; Lännergren J; Westerblad H
    Acta Physiol Scand; 1998 Mar; 162(3):285-93. PubMed ID: 9578374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow recovery of force in single skeletal muscle fibres.
    Lännergren J; Westerblad H; Bruton JD
    Acta Physiol Scand; 1996 Mar; 156(3):193-202. PubMed ID: 8729679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres.
    Chin ER; Allen DG
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):813-24. PubMed ID: 8815213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-and low-frequency fatigue revisited.
    Jones DA
    Acta Physiol Scand; 1996 Mar; 156(3):265-70. PubMed ID: 8729686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle fatigue: cellular mechanisms.
    Allen DG; Lamb GD; Westerblad H
    Physiol Rev; 2008 Jan; 88(1):287-332. PubMed ID: 18195089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres.
    Place N; Bruton JD; Westerblad H
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):334-9. PubMed ID: 18671711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres.
    Dahlstedt AJ; Katz A; Tavi P; Westerblad H
    J Physiol; 2003 Mar; 547(Pt 2):395-403. PubMed ID: 12562893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle performance--fatigue, recovery and trainability.
    Sejersted OM; Vøllestad NK; Hallén J; Bahr R
    Acta Physiol Scand; 1998 Mar; 162(3):181-2. PubMed ID: 9578363
    [No Abstract]   [Full Text] [Related]  

  • 11. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC.
    Reid MB
    Free Radic Biol Med; 2008 Jan; 44(2):169-79. PubMed ID: 18191753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C.
    Moopanar TR; Allen DG
    J Physiol; 2005 Apr; 564(Pt 1):189-99. PubMed ID: 15718257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in height of jump, maximal voluntary contraction force and low-frequency fatigue after 100 intermittent or continuous jumps with maximal intensity.
    Skurvydas A; Jascaninas J; Zachovajevas P
    Acta Physiol Scand; 2000 May; 169(1):55-62. PubMed ID: 10759611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle function: role of ionic changes in fatigue, damage and disease.
    Allen DG
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
    Head SI
    Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to fatigue of individual Xenopus single skeletal muscle fibres is correlated with mitochondrial volume density.
    Stary CM; Mathieu-Costello O; Hogan MC
    Exp Physiol; 2004 Sep; 89(5):617-21. PubMed ID: 15258122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles.
    Hamada T; Sale DG; MacDougall JD; Tarnopolsky MA
    Acta Physiol Scand; 2003 Jun; 178(2):165-73. PubMed ID: 12780391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.