BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9578565)

  • 1. Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean.
    Lee JY; Yoo BC; Harmon AC
    Biochemistry; 1998 May; 37(19):6801-9. PubMed ID: 9578565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain.
    Yoo BC; Harmon AC
    Biochemistry; 1996 Sep; 35(37):12029-37. PubMed ID: 8810907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain.
    Huang JF; Teyton L; Harper JF
    Biochemistry; 1996 Oct; 35(40):13222-30. PubMed ID: 8855961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition.
    Chandran V; Stollar EJ; Lindorff-Larsen K; Harper JF; Chazin WJ; Dobson CM; Luisi BF; Christodoulou J
    J Mol Biol; 2006 Mar; 357(2):400-10. PubMed ID: 16430916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain.
    Harmon AC; Yoo BC; McCaffery C
    Biochemistry; 1994 Jun; 33(23):7278-87. PubMed ID: 8003491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4.
    Huang JZ; Hardin SC; Huber SC
    Arch Biochem Biophys; 2001 Sep; 393(1):61-6. PubMed ID: 11516161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.
    Weljie AM; Gagné SM; Vogel HJ
    Biochemistry; 2004 Dec; 43(48):15131-40. PubMed ID: 15568805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo phosphorylation of a recombinant peptide substrate of CDPK suggests involvement of CDPK in plant stress responses.
    Shao J; Harmon AC
    Plant Mol Biol; 2003 Nov; 53(5):691-700. PubMed ID: 15010607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate.
    Hernández Sebastià C; Hardin SC; Clouse SD; Kieber JJ; Huber SC
    Arch Biochem Biophys; 2004 Aug; 428(1):81-91. PubMed ID: 15234272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities.
    Toroser D; Huber SC
    Arch Biochem Biophys; 1998 Jul; 355(2):291-300. PubMed ID: 9675040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1alpha from zebrafish (Danio rerio).
    Burzio V; Antonelli M; Allende CC; Allende JE
    J Cell Biochem; 2002; 86(4):805-14. PubMed ID: 12210746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress.
    Yang L; Ji W; Zhu Y; Gao P; Li Y; Cai H; Bai X; Guo D
    J Exp Bot; 2010 May; 61(9):2519-33. PubMed ID: 20400529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and functions of plant calcium-dependent protein kinases.
    Klimecka M; Muszyńska G
    Acta Biochim Pol; 2007; 54(2):219-33. PubMed ID: 17446936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding.
    Kilka S; Erdmann F; Migdoll A; Fischer G; Weiwad M
    Biochemistry; 2009 Mar; 48(9):1900-10. PubMed ID: 19154138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists.
    Zhang XS; Choi JH
    J Mol Evol; 2001 Sep; 53(3):214-24. PubMed ID: 11523008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a mutation in the ATP-binding region of Ca2+/calmodulin-dependent protein kinase II on its interaction with peptide substrates.
    Praseeda M; Pradeep KK; Krupa A; Krishna SS; Leena S; Kumar RR; Cheriyan J; Mayadevi M; Srinivasan N; Omkumar RV
    Biochem J; 2004 Mar; 378(Pt 2):391-7. PubMed ID: 14558884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase.
    Pettkó-Szandtner A; Mészáros T; Horváth GV; Bakó L; Csordás-Tóth E; Blastyák A; Zhiponova M; Miskolczi P; Dudits D
    Plant J; 2006 Apr; 46(1):111-23. PubMed ID: 16553899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2.
    Wu H; Zheng Y; Wang ZX
    Biochemistry; 2003 Feb; 42(4):1129-39. PubMed ID: 12549935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase.
    Donald RG; Zhong T; Wiersma H; Nare B; Yao D; Lee A; Allocco J; Liberator PA
    Mol Biochem Parasitol; 2006 Sep; 149(1):86-98. PubMed ID: 16765465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casein kinase I alpha and alpha L: alternative splicing-generated kinases exhibit different catalytic properties.
    Zhang J; Gross SD; Schroeder MD; Anderson RA
    Biochemistry; 1996 Dec; 35(50):16319-27. PubMed ID: 8973207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.