BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9578571)

  • 1. Structural features that determine the enzymatic potency and specificity of human angiogenin: threonine-80 and residues 58-70 and 116-123.
    Shapiro R
    Biochemistry; 1998 May; 37(19):6847-56. PubMed ID: 9578571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic studies on structural features that determine the enzymatic specificity and potency of human angiogenin: Thr44, Thr80, and residues 38-41.
    Holloway DE; Chavali GB; Hares MC; Baker MD; Subbarao GV; Shapiro R; Acharya KR
    Biochemistry; 2004 Feb; 43(5):1230-41. PubMed ID: 14756559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis.
    Harper JW; Vallee BL
    Biochemistry; 1989 Feb; 28(4):1875-84. PubMed ID: 2719939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the complex of human RNase inhibitor and human eosinophil-derived neurotoxin (RNase 2).
    Teufel DP; Kao RY; Acharya KR; Shapiro R
    Biochemistry; 2003 Feb; 42(6):1451-9. PubMed ID: 12578357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refined crystal structures of native human angiogenin and two active site variants: implications for the unique functional properties of an enzyme involved in neovascularisation during tumour growth.
    Leonidas DD; Shapiro R; Allen SC; Subbarao GV; Veluraja K; Acharya KR
    J Mol Biol; 1999 Jan; 285(3):1209-33. PubMed ID: 9918722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the interactions of human ribonuclease inhibitor with angiogenin and ribonuclease A by mutagenesis: importance of inhibitor residues inside versus outside the C-terminal "hot spot".
    Shapiro R; Ruiz-Gutierrez M; Chen CZ
    J Mol Biol; 2000 Sep; 302(2):497-519. PubMed ID: 10970748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis of residues flanking Lys-40 enhances the enzymatic activity and reduces the angiogenic potency of angiogenin.
    Harper JW; Fox EA; Shapiro R; Vallee BL
    Biochemistry; 1990 Aug; 29(31):7297-302. PubMed ID: 1698454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of the uridine-preferring specificity of RNase PL3.
    Vicentini AM; Kote-Jarai Z; Hofsteenge J
    Biochemistry; 1996 Jul; 35(28):9128-32. PubMed ID: 8703917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U
    Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of the enzymatic specificity of human angiogenin by site-directed mutagenesis.
    Curran TP; Shapiro R; Riordan JF
    Biochemistry; 1993 Mar; 32(9):2307-13. PubMed ID: 8095159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of small-molecule inhibitors of human angiogenin and characterization of their binding interactions guided by computational docking.
    Jenkins JL; Shapiro R
    Biochemistry; 2003 Jun; 42(22):6674-87. PubMed ID: 12779322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A.
    Chen CZ; Shapiro R
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1761-6. PubMed ID: 9050852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superadditive and subadditive effects of "hot spot" mutations within the interfaces of placental ribonuclease inhibitor with angiogenin and ribonuclease A.
    Chen CZ; Shapiro R
    Biochemistry; 1999 Jul; 38(29):9273-85. PubMed ID: 10413501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guest-host crosstalk in an angiogenin-RNase A chimeric protein.
    Holloway DE; Shapiro R; Hares MC; Leonidas DD; Acharya KR
    Biochemistry; 2002 Aug; 41(33):10482-9. PubMed ID: 12173935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacing a surface loop endows ribonuclease A with angiogenic activity.
    Raines RT; Toscano MP; Nierengarten DM; Ha JH; Auerbach R
    J Biol Chem; 1995 Jul; 270(29):17180-4. PubMed ID: 7615514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic selection for critical residues in ribonucleases.
    Smith BD; Raines RT
    J Mol Biol; 2006 Sep; 362(3):459-78. PubMed ID: 16920150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site.
    Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF
    Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains.
    Newton DL; Xue Y; Olson KA; Fett JW; Rybak SM
    Biochemistry; 1996 Jan; 35(2):545-53. PubMed ID: 8555226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic studies on the role of the C-terminal segment of human angiogenin in defining enzymatic potency.
    Leonidas DD; Shapiro R; Subbarao GV; Russo A; Acharya KR
    Biochemistry; 2002 Feb; 41(8):2552-62. PubMed ID: 11851402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.