BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9578802)

  • 1. Force acting on spheres adhered to a vessel wall.
    Sugihara-Seki M; Skalak R
    Biorheology; 1997; 34(4-5):249-60. PubMed ID: 9578802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric flows of spherical particles in a cylindrical tube.
    Sugihara-Seki M; Skalak R
    Biorheology; 1997; 34(3):155-69. PubMed ID: 9474261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow around cells adhered to a microvessel wall. I. Fluid stresses and forces acting on the cells.
    Sugihara-Seki M
    Biorheology; 2000; 37(5-6):341-59. PubMed ID: 11204541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow around cells adhered to a microvessel wall II: comparison to flow around adherent cells in channel flow.
    Sugihara-Seki M
    Biorheology; 2001; 38(1):3-13. PubMed ID: 11381161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model studies of leukocyte-endothelium-blood interactions. I. The fluid flow drag force on the adherent leukocyte.
    Chapman G; Cokelet G
    Biorheology; 1996; 33(2):119-38. PubMed ID: 8679960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow resistance and drag forces due to multiple adherent leukocytes in postcapillary vessels.
    Chapman GB; Cokelet GR
    Biophys J; 1998 Jun; 74(6):3292-301. PubMed ID: 9635783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model studies of leukocyte-endothelium-blood interactions. II. Hemodynamic impact of leukocytes adherent to the wall of post-capillary vessels.
    Chapman GB; Cokelet GR
    Biorheology; 1997; 34(1):37-56. PubMed ID: 9176589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of bio-mimetic particles with enhanced vascular interaction.
    Lee SY; Ferrari M; Decuzzi P
    J Biomech; 2009 Aug; 42(12):1885-90. PubMed ID: 19523635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamic studies of leukocyte adhesion effects on non-Newtonian blood flow through microvessels.
    Das B; Johnson PC; Popel AS
    Biorheology; 2000; 37(3):239-58. PubMed ID: 11026943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental assessment of wall shear flow in models.
    Affeld K; Kertzscher U; Goubergrits L
    Biorheology; 2002; 39(3-4):485-9. PubMed ID: 12122270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension.
    Chen SB; Cai A
    J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic interaction between erythrocytes and leukocytes affects rheology of blood in microvessels.
    Pappu V; Bagchi P
    Biorheology; 2007; 44(3):191-215. PubMed ID: 17851167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of asymmetric flows of red blood cells in capillaries.
    Sugihara-Seki M; Skalak R
    Microvasc Res; 1988 Jul; 36(1):64-74. PubMed ID: 3185304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a semipermeable membrane.
    Naiki T; Karino T
    Biorheology; 1999; 36(3):243-56. PubMed ID: 10690271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
    Lu Y; Lu X; Zhuang L; Wang W
    Biorheology; 2002; 39(3-4):431-6. PubMed ID: 12122263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes.
    Das B; Johnson PC; Popel AS
    Biorheology; 1998; 35(1):69-87. PubMed ID: 10211130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and destruction of primary thrombi under the influence of blood flow and von Willebrand factor analyzed by a discrete element method.
    Miyazaki H; Yamaguchi T
    Biorheology; 2003; 40(1-3):265-72. PubMed ID: 12454415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.