These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9578986)

  • 1. Relationships between stress, protein damage, nutrition, and age-related eye diseases.
    Taylor A; Shang F; Obin M
    Mol Aspects Med; 1997 Oct; 18(5):305-414. PubMed ID: 9578986
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiological chemistry of the eye.
    Barber GW
    Arch Ophthalmol; 1973 Mar; 89(3):236-55. PubMed ID: 4120600
    [No Abstract]   [Full Text] [Related]  

  • 3. Editorial (Thematic Issue: Roles of Sumoylation and Phosphorylation in Normal Physiology and Human Diseases).
    Li DW
    Curr Mol Med; 2017; 16(10):857-858. PubMed ID: 28067170
    [No Abstract]   [Full Text] [Related]  

  • 4. [Oxidation of the proteins of the crystalline lens in senescence and in cataract].
    Auricchio G; Testa M; Bocci N; Fiore C; CalabrĂ² S
    Boll Ocul; 1968 Jan; 47(1):3-15. PubMed ID: 5703755
    [No Abstract]   [Full Text] [Related]  

  • 5. [Free-radical oxidation in the pathogenesis of eye diseases].
    Kravchuk EA
    Vestn Oftalmol; 2004; 120(5):48-51. PubMed ID: 15529547
    [No Abstract]   [Full Text] [Related]  

  • 6. [Observations on methods of growth and protein differences of the crystalline lens during ontogenesis].
    Negroni L; Zucchini R
    Ann Ottalmol Clin Ocul; 1967 Oct; 93(10):994-1008. PubMed ID: 5605818
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of photooxidation on the eye lens and role of nutrients in delaying cataract.
    Taylor A
    EXS; 1992; 62():266-79. PubMed ID: 1450591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Disorders of the oxidation-reduction processes in the ocular structures in pathology and stress states].
    Moiseeva NN
    Oftalmol Zh; 1988; (6):364-8. PubMed ID: 3071757
    [No Abstract]   [Full Text] [Related]  

  • 9. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens.
    Taylor A; Davies KJ
    Free Radic Biol Med; 1987; 3(6):371-7. PubMed ID: 3322949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroquine ocular toxicity.
    Bernstein HN
    Surv Ophthalmol; 1967 Oct; 12(5):415-47. PubMed ID: 4980087
    [No Abstract]   [Full Text] [Related]  

  • 11. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scleral calcification and photoreceptor cell death during aging and exposure to chronic stress.
    O'Steen WK; Brodish A
    Am J Anat; 1990 Sep; 189(1):62-8. PubMed ID: 2239747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iris ultrastructural changes in senile pseudo-exfoliation. So-called fibrillopathia epithelio-capsularis.
    Anastasi G; Puzzolo D; Romeo G; Santoro A; Scullica L
    Ophthalmologica; 1974; 168(2):109-21. PubMed ID: 4842097
    [No Abstract]   [Full Text] [Related]  

  • 14. [Cause and prevention of oxidative damage to the eye. Current knowledge].
    Augustin AJ; Dick HB; Winkgen A; Schmidt-Erfurth U
    Ophthalmologe; 2001 Aug; 98(8):776-96; quiz 796-7. PubMed ID: 11552420
    [No Abstract]   [Full Text] [Related]  

  • 15. Nutrition and metabolic eye disease.
    Haddad HM
    Metab Pediatr Syst Ophthalmol (1985); 1994; 17(1-4):41-4. PubMed ID: 8719285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-oxidation of proteins and comparison of photo-oxidized proteins with those of the cataractous human lens.
    Pirie A
    Isr J Med Sci; 1972; 8(8):1567-73. PubMed ID: 4647822
    [No Abstract]   [Full Text] [Related]  

  • 17. o-Tyrosine and dityrosine concentrations in oxidized proteins and lens proteins with age.
    Huggins TG; Staton MW; Dyer DG; Detorie NJ; Walla MD; Baynes JW; Thorpe SR
    Ann N Y Acad Sci; 1992 Nov; 663():436-7. PubMed ID: 1482077
    [No Abstract]   [Full Text] [Related]  

  • 18. Presbyopia. Emerging from a blur towards an understanding of the molecular basis for this most common eye condition.
    Truscott RJ
    Exp Eye Res; 2009 Feb; 88(2):241-7. PubMed ID: 18675268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrition and Eye Health.
    Lawrenson JG; Downie LE
    Nutrients; 2019 Sep; 11(9):. PubMed ID: 31489894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.