These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9579084)

  • 1. Fructose and mannose metabolism in Aeromonas hydrophila: identification of transport systems and catabolic pathways.
    Binet MRB; Rager MN; Bouvet OMM
    Microbiology (Reading); 1998 Apr; 144 ( Pt 4)():1113-1121. PubMed ID: 9579084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida.
    Binet MR; Bouvet OM
    Res Microbiol; 1998 Feb; 149(2):83-94. PubMed ID: 9766212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.
    Baumann P; Baumann L
    Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5.
    Liberman ES; Bleiweis AS
    Infect Immun; 1984 Mar; 43(3):1106-9. PubMed ID: 6698606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes.
    de Crécy-Lagard V; Bouvet OM; Lejeune P; Danchin A
    J Biol Chem; 1991 Sep; 266(27):18154-61. PubMed ID: 1655739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system.
    Bourassa S; Vadeboncoeur C
    J Gen Microbiol; 1992 Apr; 138(4):769-77. PubMed ID: 1534118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 31P-NMR and 13C-NMR studies of mannose metabolism in Plesiomonas shigelloides. Toxic effect of mannose on growth.
    Rager MN; Binet MR; Ionescu G; Bouvet OM
    Eur J Biochem; 2000 Aug; 267(16):5136-41. PubMed ID: 10931197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes.
    Mitchell WJ; Reizer J; Herring C; Hoischen C; Saier MH
    J Bacteriol; 1993 May; 175(9):2758-61. PubMed ID: 8478337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system.
    Aboulwafa M; Zhang Z; Saier MH
    PLoS One; 2019; 14(11):e0219332. PubMed ID: 31751341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of mannose by an inducible phosphoenolpyruvate:fructose phosphotransferase system in Streptococcus salivarius.
    Pelletier G; Frenette M; Vadeboncoeur C
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2433-8. PubMed ID: 7952194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris.
    de Crécy-Lagard V; Lejeune P; Bouvet OM; Danchin A
    Mol Gen Genet; 1991 Jul; 227(3):465-72. PubMed ID: 1650911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two Uptake Systems for Fructose in Lactococcus lactis subsp. cremoris FD1 Produce Glycolytic and Gluconeogenic Fructose Phosphates and Induce Oscillations in Growth and Lactic Acid Formation.
    Benthin S; Nielsen J; Villadsen J
    Appl Environ Microbiol; 1993 Oct; 59(10):3206-11. PubMed ID: 16349061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P and 13C nuclear magnetic resonance studies of metabolic pathways in Pasteurella multocida characterization of a new mannitol-producing metabolic pathway.
    Rager MN; Binet MR; Bouvet OM
    Eur J Biochem; 1999 Aug; 263(3):695-701. PubMed ID: 10469132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolism of fructose and mannitol in Clostridium thermocellum: presence of phosphoenolpyruvate: fructose phosphotransferase, fructose 1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol 1-phosphate dehydrogenase in cell extracts.
    Patni NJ; Alexander JK
    J Bacteriol; 1971 Jan; 105(1):226-31. PubMed ID: 5541009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase.
    Pickl A; Johnsen U; Schönheit P
    J Bacteriol; 2012 Jun; 194(12):3088-97. PubMed ID: 22493022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.
    Van der Heiden E; Delmarcelle M; Simon P; Counson M; Galleni M; Freedberg DI; Thompson J; Joris B; Battistel MD
    J Mol Microbiol Biotechnol; 2015; 25(2-3):106-19. PubMed ID: 26159072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-PTS uptake and subsequent metabolism of glucose in Pediococcus halophilus as demonstrated with a double mutant defective in phosphoenolpyruvate:mannose phosphotransferase system and in phosphofructokinase.
    Abe K; Uchida K
    Arch Microbiol; 1990; 153(6):537-40. PubMed ID: 2142414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.