These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 9579323)

  • 21. Differential effects of dopamine D1 and D2 receptor antagonists on conditioned orienting behavior in the rat.
    Chang YH; Liao RM
    Chin J Physiol; 2003 Dec; 46(4):159-68. PubMed ID: 15074836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward.
    Ikemoto S; Glazier BS; Murphy JM; McBride WJ
    J Neurosci; 1997 Nov; 17(21):8580-7. PubMed ID: 9334429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dopaminergic modulation of neuronal activity in the monkey putamen through D1 and D2 receptors during a delayed Go/Nogo task.
    Inase M; Li BM; Tanji J
    Exp Brain Res; 1997 Nov; 117(2):207-18. PubMed ID: 9419068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopaminergic Modulation of Striatal Inhibitory Transmission and Long-Term Plasticity.
    Nieto Mendoza E; Hernández Echeagaray E
    Neural Plast; 2015; 2015():789502. PubMed ID: 26294980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex.
    Calaminus C; Hauber W
    Neuroscience; 2008 Jul; 154(4):1195-204. PubMed ID: 18538938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constitutive activity of a chimeric D2/D1 dopamine receptor.
    Kozell LB; Neve KA
    Mol Pharmacol; 1997 Dec; 52(6):1137-49. PubMed ID: 9396784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys.
    Von Huben SN; Davis SA; Lay CC; Katner SN; Crean RD; Taffe MA
    Psychopharmacology (Berl); 2006 Nov; 188(4):586-96. PubMed ID: 16538469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice.
    Couppis MH; Kennedy CH
    Psychopharmacology (Berl); 2008 Apr; 197(3):449-56. PubMed ID: 18193405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.
    Centonze D; Grande C; Saulle E; Martin AB; Gubellini P; Pavón N; Pisani A; Bernardi G; Moratalla R; Calabresi P
    J Neurosci; 2003 Sep; 23(24):8506-12. PubMed ID: 13679419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity.
    Urakubo H; Yagishita S; Kasai H; Ishii S
    PLoS Comput Biol; 2020 Jul; 16(7):e1008078. PubMed ID: 32701987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dopamine receptors regulate preference between high-effort and high-risk rewards.
    Gabriel DBK; Liley AE; Freels TG; Simon NW
    Psychopharmacology (Berl); 2021 Apr; 238(4):991-1004. PubMed ID: 33410986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible role of dopamine D1-like and D2-like receptors in behavioural activation and "contingent" reward evaluation in sodium-replete and sodium-depleted rats licking for NaCl solutions.
    D'Aquila PS; Rossi R; Rizzi A; Galistu A
    Pharmacol Biochem Behav; 2012 Mar; 101(1):99-106. PubMed ID: 22197709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.
    Larkin JD; Jenni NL; Floresco SB
    Psychopharmacology (Berl); 2016 Jan; 233(1):121-36. PubMed ID: 26432096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling.
    Li J; Guo Y; Schroeder FA; Youngs RM; Schmidt TW; Ferris C; Konradi C; Akbarian S
    J Neurochem; 2004 Sep; 90(5):1117-31. PubMed ID: 15312167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain.
    Robertson GS; Jian M
    Neuroscience; 1995 Feb; 64(4):1019-34. PubMed ID: 7753373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dopaminergic regulation of serotonin release in the substantia nigra of the freely moving rat using microdialysis.
    Thorré K; Sarre S; Smolders I; Ebinger G; Michotte Y
    Brain Res; 1998 Jun; 796(1-2):107-16. PubMed ID: 9689460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus.
    Poisik OV; Smith Y; Conn PJ
    Eur J Neurosci; 2007 Aug; 26(4):852-62. PubMed ID: 17672856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity.
    LaHoste GJ; Yu J; Marshall JF
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7451-5. PubMed ID: 8102797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of dopamine D1 and D2 receptors on striatal acetylcholine release in rats.
    Ikarashi Y; Takahashi A; Ishimaru H; Arai T; Maruyama Y
    Brain Res Bull; 1997; 43(1):107-15. PubMed ID: 9205804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiological verification of the presence of D1 and D2 dopamine receptors within the ventral pallidum.
    Napier TC; Maslowski-Cobuzzi RJ
    Synapse; 1994 Jul; 17(3):160-6. PubMed ID: 7974198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.