These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9579520)

  • 1. Effects of halothane on the sarcoplasmic reticulum Ca2+ stores and contractile proteins in rabbit pulmonary arteries.
    Su JY; Tang LJ
    Anesthesiology; 1998 Apr; 88(4):1096-106. PubMed ID: 9579520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of halothane on calcium(2+)-activated tension of the contractile proteins and calcium(2+) uptake and release by the sarcoplasmic reticulum in skinned human myocardial fibers.
    Sivarajan M; Su JY; Hofer BO
    Anesth Analg; 1995 Jul; 81(1):52-6. PubMed ID: 7598282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular mechanisms of halothane's effect on isolated aortic strips of the rabbit.
    Su JY; Zhang CC
    Anesthesiology; 1989 Sep; 71(3):409-17. PubMed ID: 2774268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-calmodulin-dependent protein kinase II plays a major role in halothane-induced dose-dependent relaxation in the skinned pulmonary artery.
    Su JY; Vo AC
    Anesthesiology; 2002 Jul; 97(1):207-14. PubMed ID: 12131124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual actions of halothane on intracellular calcium stores of vascular smooth muscle.
    Akata T; Boyle W
    Anesthesiology; 1996 Mar; 84(3):580-95. PubMed ID: 8659787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and mitogen-activated protein kinases in volatile anesthetic-induced relaxation in newborn rabbit pulmonary artery.
    Su JY; Vo AC
    Anesthesiology; 2003 Jul; 99(1):131-7. PubMed ID: 12826852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of sevoflurane, isoflurane, and halothane on Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.
    Kunst G; Graf BM; Schreiner R; Martin E; Fink RH
    Anesthesiology; 1999 Jul; 91(1):179-86. PubMed ID: 10422943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of isoflurane-increased submaximum Ca2+-activated force in rabbit skinned femoral arterial strips.
    Toda H; Su JY
    Anesthesiology; 1998 Sep; 89(3):731-40. PubMed ID: 9743412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effects of halothane on skinned myocardial fibers from newborn and adult rabbit: II. Effects on sarcoplasmic reticulum.
    Krane EJ; Su JY
    Anesthesiology; 1989 Jul; 71(1):103-9. PubMed ID: 2751121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of halothane, isoflurane and sevoflurane on sarcoplasmic reticulum of vascular smooth muscle in dog mesenteric artery.
    Yamamoto M; Hatano Y; Kakuyama M; Nakamura K; Tachibana T; Maeda H; Mori K
    Acta Anaesthesiol Scand; 1997 Mar; 41(3):376-80. PubMed ID: 9113183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in skeletal muscle from humans susceptible to malignant hyperthermia.
    Duke AM; Hopkins PM; Halsal JP; Steele DS
    Anesthesiology; 2004 Dec; 101(6):1339-46. PubMed ID: 15564941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular mechanism of action of isoflurane and halothane on striated muscle of the rabbit.
    Su JY; Bell JG
    Anesth Analg; 1986 May; 65(5):457-62. PubMed ID: 3963430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers.
    Su JY; Kerrick WG
    Pflugers Arch; 1979 May; 380(1):29-34. PubMed ID: 572036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of PKC in isoflurane-induced biphasic contraction in skinned pulmonary arterial strips.
    Su JY; Vo AC
    Anesthesiology; 2002 Jan; 96(1):155-61. PubMed ID: 11753016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of halothane and isoflurane on cytosolic calcium ion concentrations and contraction in the vascular smooth muscle of the rat aorta.
    Tsuchida H; Namba H; Yamakage M; Fujita S; Notsuki E; Namiki A
    Anesthesiology; 1993 Mar; 78(3):531-40. PubMed ID: 7681270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of halothane on the sarcoplasmic reticulum in normal and right ventricular hypertrophy in rabbits.
    Rooke GA; Su JY
    Anesth Analg; 1993 Dec; 77(6):1091-7. PubMed ID: 8250296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Left ventricular hypertrophy in rabbits does not exaggerate the effects of halothane on the intracellular components of cardiac contraction.
    Rooke GA; Su JY
    Anesthesiology; 1992 Sep; 77(3):513-21. PubMed ID: 1387768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of intracellular Ca2+ stores in the inhibitory effect of halothane on airway smooth muscle contraction.
    Yamakage M; Kohro S; Matsuzaki T; Tsuchida H; Namiki A
    Anesthesiology; 1998 Jul; 89(1):165-73. PubMed ID: 9667306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in rat skeletal muscle.
    Duke AM; Hopkins PM; Steele DS
    J Physiol; 2003 Sep; 551(Pt 2):447-54. PubMed ID: 12909676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FK506 (tacrolimus) increases halothane-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum.
    Chini EN; Walker H
    Anesthesiology; 2000 May; 92(5):1361-5. PubMed ID: 10781282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.