These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 9580145)
1. Role of AT1 receptors in the renal papillary effects of acute and chronic nitric oxide inhibition. Ortíz MC; Fortepiani LA; Ruiz-Marcos FM; Atucha NM; García-Estañ J Am J Physiol; 1998 Mar; 274(3):R760-6. PubMed ID: 9580145 [TBL] [Abstract][Full Text] [Related]
2. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow. Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273 [TBL] [Abstract][Full Text] [Related]
3. Regional renal haemodynamics of angiotensin II infusion under prostaglandin, kinin or converting enzyme inhibition in the Wistar rat. Rudenstam J; Creutz J; Göthberg G; Karlström G; Bergström G Blood Press; 2000; 9(2-3):169-75. PubMed ID: 10855742 [TBL] [Abstract][Full Text] [Related]
4. Losartan attenuates modest but not strong renal vasoconstriction induced by nitric oxide inhibition. Turkstra E; Braam B; Koomans HA J Cardiovasc Pharmacol; 1998 Oct; 32(4):593-600. PubMed ID: 9781927 [TBL] [Abstract][Full Text] [Related]
5. Angiotensin-converting enzyme inhibition and angiotensin AT1-receptor antagonism equally improve endothelial vasodilator function in L-NAME-induced hypertensive rats. De Gennaro Colonna V; Rigamonti A; Fioretti S; Bonomo S; Manfredi B; Ferrario P; Bianchi M; Berti F; Muller EE; Rossoni G Eur J Pharmacol; 2005 Jun; 516(3):253-9. PubMed ID: 15963975 [TBL] [Abstract][Full Text] [Related]
6. Renal and vascular effects of chronic nitric oxide synthase inhibition: involvement of endothelin 1 and angiotensin II. D'Amours M; Lebel M; Grose JH; Larivière R Can J Physiol Pharmacol; 1999 Jan; 77(1):8-16. PubMed ID: 10535660 [TBL] [Abstract][Full Text] [Related]
7. Influence of nitric oxide in the chronic phase of two-kidney, one clip renovascular hypertension. Sigmon DH; Beierwaltes WH Hypertension; 1998 Feb; 31(2):649-56. PubMed ID: 9461236 [TBL] [Abstract][Full Text] [Related]
8. Acute hypertension after nitric oxide synthase inhibition is mediated primarily by increased endothelin vasoconstriction. Banting JD; Friberg P; Adams MA J Hypertens; 1996 Aug; 14(8):975-81. PubMed ID: 8884552 [TBL] [Abstract][Full Text] [Related]
9. Losartan-sensitive renal damage caused by chronic NOS inhibition does not involve increased renal angiotensin II concentrations. Verhagen AM; Braam B; Boer P; Gröne HJ; Koomans HA; Joles JA Kidney Int; 1999 Jul; 56(1):222-31. PubMed ID: 10411696 [TBL] [Abstract][Full Text] [Related]
10. H+-ATPase activity on unilateral ureteral obstruction: interaction of endogenous nitric oxide and angiotensin II. Valles PG; Manucha WA Kidney Int; 2000 Oct; 58(4):1641-51. PubMed ID: 11012898 [TBL] [Abstract][Full Text] [Related]
11. Effect of losartan on renal microvasculature during chronic inhibition of nitric oxide visualized by micro-CT. Fortepiani LA; Ruiz MC; Passardi F; Bentley MD; Garcia-Estan J; Ritman EL; Romero JC Am J Physiol Renal Physiol; 2003 Nov; 285(5):F852-60. PubMed ID: 12837684 [TBL] [Abstract][Full Text] [Related]
12. Angiotensin II-induced renal responses in anesthetized rabbits: effects of N omega-nitro-L-arginine methyl ester and losartan. Adachi Y; Hashimoto K; Hisa H; Yoshida M; Suzuki-Kusaba M; Satoh S Eur J Pharmacol; 1996 Jul; 308(2):165-71. PubMed ID: 8840128 [TBL] [Abstract][Full Text] [Related]
13. Interactions between angiotensin II and nitric oxide during exercise in normal and heart failure rats. Symons JD; Stebbins CL; Musch TI J Appl Physiol (1985); 1999 Aug; 87(2):574-81. PubMed ID: 10444615 [TBL] [Abstract][Full Text] [Related]
14. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. Siragy HM; Carey RM J Clin Invest; 1997 Jul; 100(2):264-9. PubMed ID: 9218502 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of angiotensin AT1 receptor blockade in malignant hypertension in the rat. Therrien F; Lemieux P; Bélanger S; Agharazii M; Lebel M; Larivière R Eur J Pharmacol; 2009 Apr; 607(1-3):126-34. PubMed ID: 19326569 [TBL] [Abstract][Full Text] [Related]
16. Angiotensin II and renal medullary blood flow in Lyon rats. Sarkis A; Liu KL; Lo M; Benzoni D Am J Physiol Renal Physiol; 2003 Feb; 284(2):F365-72. PubMed ID: 12529274 [TBL] [Abstract][Full Text] [Related]
17. Endothelin resets renal blood flow autoregulatory efficiency during acute blockade of NO in the rat. Kramp R; Fourmanoir P; Caron N Am J Physiol Renal Physiol; 2001 Dec; 281(6):F1132-40. PubMed ID: 11704565 [TBL] [Abstract][Full Text] [Related]
18. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study. Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658 [TBL] [Abstract][Full Text] [Related]
19. Angiotensin II subtype AT1 receptor blockade prevents hypertension and renal insufficiency induced by chronic NO-synthase inhibition in rats. Hropot M; Langer KH; Wiemer G; Grötsch H; Linz W Naunyn Schmiedebergs Arch Pharmacol; 2003 Mar; 367(3):312-7. PubMed ID: 12644905 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II and alpha 1-adrenergic tone in chronic nitric oxide blockade-induced hypertension. Qiu C; Engels K; Baylis C Am J Physiol; 1994 May; 266(5 Pt 2):R1470-6. PubMed ID: 8203622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]