These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 9580446)
1. Lactic acid fermentation and storage of blanched garlic. de Castro A; Montaño A; Sánchez AH; Rejano L Int J Food Microbiol; 1998 Feb; 39(3):205-11. PubMed ID: 9580446 [TBL] [Abstract][Full Text] [Related]
2. Effect of processing and storage time on the contents of organosulfur compounds in pickled blanched garlic. Beato VM; Sánchez AH; de Castro A; Montaño A J Agric Food Chem; 2012 Apr; 60(13):3485-91. PubMed ID: 22416880 [TBL] [Abstract][Full Text] [Related]
3. Characterization of lactic acid bacteria isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for fermentation. Paludan-Müller C; Huss HH; Gram L Int J Food Microbiol; 1999 Feb; 46(3):219-29. PubMed ID: 10100902 [TBL] [Abstract][Full Text] [Related]
4. Genotypic and phenotypic characterization of garlic-fermenting lactic acid bacteria isolated from som-fak, a Thai low-salt fermented fish product. Paludan-Müller C; Valyasevi R; Huss HH; Gram L J Appl Microbiol; 2002; 92(2):307-14. PubMed ID: 11849359 [TBL] [Abstract][Full Text] [Related]
5. Processing and storage of lye-treated carrots fermented by a mixed starter culture. Montaño A; Sánchez AH; Rejano L; de Castro A Int J Food Microbiol; 1997 Mar; 35(1):83-90. PubMed ID: 9081229 [TBL] [Abstract][Full Text] [Related]
6. Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product. Bernbom N; Ng YY; Paludan-Müller C; Gram L Int J Food Microbiol; 2009 Sep; 134(3):223-9. PubMed ID: 19640599 [TBL] [Abstract][Full Text] [Related]
7. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Panagou EZ; Schillinger U; Franz CM; Nychas GJ Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777 [TBL] [Abstract][Full Text] [Related]
8. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Gardner NJ; Savard T; Obermeier P; Caldwell G; Champagne CP Int J Food Microbiol; 2001 Mar; 64(3):261-75. PubMed ID: 11294348 [TBL] [Abstract][Full Text] [Related]
9. Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. Di Cagno R; Surico RF; Siragusa S; De Angelis M; Paradiso A; Minervini F; De Gara L; Gobbetti M Int J Food Microbiol; 2008 Oct; 127(3):220-8. PubMed ID: 18710789 [TBL] [Abstract][Full Text] [Related]
10. Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives. Panagou EZ; Tassou CC Food Microbiol; 2006 Dec; 23(8):738-46. PubMed ID: 16943076 [TBL] [Abstract][Full Text] [Related]
11. Fermentation of fructans by epiphytic lactic acid bacteria. Müller M; Lier D J Appl Bacteriol; 1994 Apr; 76(4):406-11. PubMed ID: 8200866 [TBL] [Abstract][Full Text] [Related]
12. Oat bran beta-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. Kontula P; von Wright A; Mattila-Sandholm T Int J Food Microbiol; 1998 Dec; 45(2):163-9. PubMed ID: 9924948 [TBL] [Abstract][Full Text] [Related]
13. Utilization of various starter cultures in the production of Amasi, a Zimbabwean naturally fermented raw milk product. Gran HM; Gadaga HT; Narvhus JA Int J Food Microbiol; 2003 Nov; 88(1):19-28. PubMed ID: 14527782 [TBL] [Abstract][Full Text] [Related]
14. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Blana VA; Grounta A; Tassou CC; Nychas GJ; Panagou EZ Food Microbiol; 2014 Apr; 38():208-18. PubMed ID: 24290645 [TBL] [Abstract][Full Text] [Related]
15. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage. Johanningsmeier SD; Franco W; Perez-Diaz I; McFeeters RF J Food Sci; 2012 Jul; 77(7):M397-404. PubMed ID: 22757713 [TBL] [Abstract][Full Text] [Related]
16. Fermentation of raw poultry byproducts for animal nutrition. Urlings HA; Bijker PG; van Logtestijn JG J Anim Sci; 1993 Sep; 71(9):2420-6. PubMed ID: 8407654 [TBL] [Abstract][Full Text] [Related]
17. Optimisation of lactic acid fermentation for improved vinegar flavour during rosy vinegar brewing. Jiang Y; Guo J; Li Y; Lin S; Wang L; Li J J Sci Food Agric; 2010 Jun; 90(8):1334-9. PubMed ID: 20474052 [TBL] [Abstract][Full Text] [Related]
18. Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Makras L; Van Acker G; De Vuyst L Appl Environ Microbiol; 2005 Nov; 71(11):6531-7. PubMed ID: 16269678 [TBL] [Abstract][Full Text] [Related]
19. Effect of blanching time and salt concentration on pectolytic enzymes, texture and acceptability of fermented green beans. Mnkeni AP; Gierschner K; Maeda EE Plant Foods Hum Nutr; 1999; 53(4):285-96. PubMed ID: 10540980 [TBL] [Abstract][Full Text] [Related]
20. Functional fermented whey-based beverage using lactic acid bacteria. Pescuma M; Hébert EM; Mozzi F; de Valdez GF Int J Food Microbiol; 2010 Jun; 141(1-2):73-81. PubMed ID: 20483186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]